Cargando…
SAELGMDA: Identifying human microbe–disease associations based on sparse autoencoder and LightGBM
INTRODUCTION: Identification of complex associations between diseases and microbes is important to understand the pathogenesis of diseases and design therapeutic strategies. Biomedical experiment-based Microbe-Disease Association (MDA) detection methods are expensive, time-consuming, and laborious....
Autores principales: | Wang, Feixiang, Yang, Huandong, Wu, Yan, Peng, Lihong, Li, Xiaoling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320730/ https://www.ncbi.nlm.nih.gov/pubmed/37415823 http://dx.doi.org/10.3389/fmicb.2023.1207209 |
Ejemplares similares
-
A Human Activity Recognition Algorithm Based on Stacking Denoising Autoencoder and LightGBM
por: Gao, Xile, et al.
Publicado: (2019) -
LGBMDF: A cascade forest framework with LightGBM for predicting drug-target interactions
por: Peng, Yu, et al.
Publicado: (2023) -
Predicting Metabolite–Disease Associations Based on LightGBM Model
por: Zhang, Cheng, et al.
Publicado: (2021) -
Forecast of the COVID-19 Epidemic Based on RF-BOA-LightGBM
por: Li, Zhe, et al.
Publicado: (2021) -
Diagnosis of Diabetes Mellitus Using Gradient Boosting Machine (LightGBM)
por: Rufo, Derara Duba, et al.
Publicado: (2021)