Cargando…
High-fidelity encoding of mechanostimuli by tactile food-sensing neurons requires an ensemble of ion channels
The nematode C. elegans uses mechanosensitive neurons to detect bacteria, which are food for worms. These neurons release dopamine to suppress foraging and promote dwelling. Through a screen of genes highly expressed in dopaminergic food-sensing neurons, we identify a K2P-family potassium channel—TW...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320741/ https://www.ncbi.nlm.nih.gov/pubmed/37119137 http://dx.doi.org/10.1016/j.celrep.2023.112452 |
Sumario: | The nematode C. elegans uses mechanosensitive neurons to detect bacteria, which are food for worms. These neurons release dopamine to suppress foraging and promote dwelling. Through a screen of genes highly expressed in dopaminergic food-sensing neurons, we identify a K2P-family potassium channel—TWK-2—that damps their activity. Strikingly, loss of TWK-2 restores mechanosensation to neurons lacking the NOMPC-like channel transient receptor potential 4 (TRP-4), which was thought to be the primary mechanoreceptor for tactile food sensing. The alternate mechanoreceptor mechanism uncovered by TWK-2 mutation requires three Deg/ENaC channel subunits: ASIC-1, DEL-3, and UNC-8. Analysis of cell-physiological responses to mechanostimuli indicates that TRP and Deg/ENaC channels work together to set the range of analog encoding of stimulus intensity and to improve signal-to-noise characteristics and temporal fidelity of food-sensing neurons. We conclude that a specialized mechanosensory modality—tactile food sensing—emerges from coordination of distinct force-sensing mechanisms housed in one type of sensory neuron. |
---|