Cargando…
The Bayesian Mutation Sampler Explains Distributions of Causal Judgments
One consistent finding in the causal reasoning literature is that causal judgments are rather variable. In particular, distributions of probabilistic causal judgments tend not to be normal and are often not centered on the normative response. As an explanation for these response distributions, we pr...
Autores principales: | Kolvoort, Ivar R., Temme, Nina, van Maanen, Leendert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320818/ https://www.ncbi.nlm.nih.gov/pubmed/37416078 http://dx.doi.org/10.1162/opmi_a_00080 |
Ejemplares similares
-
The Bayesian Sampler: Generic Bayesian Inference Causes Incoherence in Human Probability Judgments
por: Zhu, Jian-Qiao, et al.
Publicado: (2020) -
Gradient-based MCMC samplers for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2016) -
Conceptually plausible Bayesian inference in interval timing
por: Maaß, Sarah C., et al.
Publicado: (2021) -
BCM: toolkit for Bayesian analysis of Computational Models using samplers
por: Thijssen, Bram, et al.
Publicado: (2016) -
Moving in time: Bayesian causal inference explains movement coordination to auditory beats
por: Elliott, Mark T., et al.
Publicado: (2014)