Cargando…

Intermediate complex morphophysiological dormancy in seeds of Aconitum barbatum (Ranunculaceae)

BACKGROUND: Seed dormancy and germination are key components of plant regeneration strategies. Aconitum barbatum is a plant commonly found in northeast China. Although it has potential for use in gardening and landscaping, its seed dormancy and regeneration strategy, which adapt to its natural habit...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lei, Xu, Chaohan, Liu, Huina, Wu, Qingqing, Tao, Jun, Zhang, Keliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320901/
https://www.ncbi.nlm.nih.gov/pubmed/37407945
http://dx.doi.org/10.1186/s12870-023-04357-x
Descripción
Sumario:BACKGROUND: Seed dormancy and germination are key components of plant regeneration strategies. Aconitum barbatum is a plant commonly found in northeast China. Although it has potential for use in gardening and landscaping, its seed dormancy and regeneration strategy, which adapt to its natural habitat, are not well understood. Our aim was to identify conditions for breaking A. barbatum seed dormancy and determine its dormancy type. Embryo growth and germination were determined by collecting seeds over time in the field. Laboratory experiments that control light, temperature, and stratification period were conducted to assess dormancy breaking and germination, and GA(3) was used to identify dormancy type. RESULTS: Seeds of A. barbatum have undeveloped embryos with physiological dormancy at maturity in autumn. The embryo-to-seed length ratio increases from 0.33 to 0.78 before the emergence of the radical. Under natural environmental conditions, embryo development begins in early winter. Laboratory experiments have shown that long-term incubation under 4 °C (cold stratification) promotes embryo development and seed dormancy break. With an extension of cold stratification, an increase in germination percentages was observed when seeds were transferred from 4 °C to warmer temperatures. Seeds exposed to light during incubation show a higher germination percentage than those kept in the dark. Seed germination can also be enhanced by a 100 mg/L GA(3) concentration. CONCLUSIONS: Seeds of A. barbatum display intermediate complex morphophysiological dormancy at maturity. In addition to the underdeveloped embryo, there are also physiological barriers that prevent the embryo from germinating. Dormancy breaking of A. barbatum seeds can be achieved by natural winter cold stratification, allowing seeds to germinate and sprout seedlings at the beginning of the following growing season. Our findings provide valuable insights into the seed dormancy and regeneration strategy of A. barbatum, which could facilitate its effective utilization in gardening and landscaping.