Cargando…
TB-IECS: an accurate machine learning-based scoring function for virtual screening
Machine learning-based scoring functions (MLSFs) have shown potential for improving virtual screening capabilities over classical scoring functions (SFs). Due to the high computational cost in the process of feature generation, the numbers of descriptors used in MLSFs and the characterization of pro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320911/ https://www.ncbi.nlm.nih.gov/pubmed/37403155 http://dx.doi.org/10.1186/s13321-023-00731-x |
Sumario: | Machine learning-based scoring functions (MLSFs) have shown potential for improving virtual screening capabilities over classical scoring functions (SFs). Due to the high computational cost in the process of feature generation, the numbers of descriptors used in MLSFs and the characterization of protein–ligand interactions are always limited, which may affect the overall accuracy and efficiency. Here, we propose a new SF called TB-IECS (theory-based interaction energy component score), which combines energy terms from Smina and NNScore version 2, and utilizes the eXtreme Gradient Boosting (XGBoost) algorithm for model training. In this study, the energy terms decomposed from 15 traditional SFs were firstly categorized based on their formulas and physicochemical principles, and 324 feature combinations were generated accordingly. Five best feature combinations were selected for further evaluation of the model performance in regard to the selection of feature vectors with various length, interaction types and ML algorithms. The virtual screening power of TB-IECS was assessed on the datasets of DUD-E and LIT-PCBA, as well as seven target-specific datasets from the ChemDiv database. The results showed that TB-IECS outperformed classical SFs including Glide SP and Dock, and effectively balanced the efficiency and accuracy for practical virtual screening. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13321-023-00731-x. |
---|