Cargando…
TB-IECS: an accurate machine learning-based scoring function for virtual screening
Machine learning-based scoring functions (MLSFs) have shown potential for improving virtual screening capabilities over classical scoring functions (SFs). Due to the high computational cost in the process of feature generation, the numbers of descriptors used in MLSFs and the characterization of pro...
Autores principales: | Zhang, Xujun, Shen, Chao, Jiang, Dejun, Zhang, Jintu, Ye, Qing, Xu, Lei, Hou, Tingjun, Pan, Peichen, Kang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320911/ https://www.ncbi.nlm.nih.gov/pubmed/37403155 http://dx.doi.org/10.1186/s13321-023-00731-x |
Ejemplares similares
-
A generalized protein–ligand scoring framework with balanced scoring, docking, ranking and screening powers
por: Shen, Chao, et al.
Publicado: (2023) -
Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network
por: Du, Hongyan, et al.
Publicado: (2022) -
Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery
por: Sun, Huiyong, et al.
Publicado: (2016) -
Discovery of Novel ROCK1 Inhibitors via Integrated Virtual Screening Strategy and Bioassays
por: Shen, Mingyun, et al.
Publicado: (2015) -
In Silico Exploration for Novel Type-I Inhibitors of Tie-2/TEK: The Performance of Different Selection Strategy in Selecting Virtual Screening Candidates
por: Pan, Peichen, et al.
Publicado: (2016)