Cargando…

Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole

BACKGROUND: Non-typeable Haemophilus influenzae (NTHi) has become the major cause of invasive H. influenzae diseases in the post-H. influenzae type b vaccine era. The emergence of multidrug-resistant (MDR) NTHi is a growing public health problem. Herein, we investigated the molecular basis of MDR in...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Pei-Yi, Cheng, Wei-Hung, Ho, Cheng-Hsun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320927/
https://www.ncbi.nlm.nih.gov/pubmed/37407940
http://dx.doi.org/10.1186/s12866-023-02926-6
Descripción
Sumario:BACKGROUND: Non-typeable Haemophilus influenzae (NTHi) has become the major cause of invasive H. influenzae diseases in the post-H. influenzae type b vaccine era. The emergence of multidrug-resistant (MDR) NTHi is a growing public health problem. Herein, we investigated the molecular basis of MDR in NTHi. The isolated NTHi were subjected to antimicrobial susceptibility testing for 12 agents. Whole genome and plasmid sequencing were conducted and analyzed to identify significant genetic variations and plasmid-encoded genes conferred antibiotic resistance. RESULTS: Thirteen (50%) MDR NTHi isolates were obtained; of these, 92.3% were non-susceptible to ampicillin, 30.8% to amoxicillin-clavulanate, 61.5% to cefuroxime, 61.5% to ciprofloxacin/levofloxacin, 92.3% to trimethoprim-sulfamethoxazole, 30.8% to tetracycline, and 7.7% to azithromycin. Eight ampicillin-resistant isolates were β-lactamase positive; of these, 6 carried bla(TEM-1) and 2 carried bla(ROB-1), whereas 4 were β-lactamase negative. Genetic variations in mrdA, mepA, and pbpG were correlated with amoxicillin-clavulanate non-susceptibility, whereas variations in ftsI and lpoA conferred cefuroxime resistance. Five variations in gyrA, 2 in gyrB, 3 in parC, 1 in parE, and 1 in the parC-parE intergenic region were associated with levofloxacin/ciprofloxacin non-susceptibility. Among these genes, 8 variations were linked to high-level levofloxacin resistance. Six variations in folA were associated with trimethoprim-sulfamethoxazole resistance. Plasmid-bearing tet(B) and mef(A) genes were responsible for tetracycline and azithromycin resistance in 4 and 1 MDR isolates, respectively. CONCLUSIONS: This study clarified the molecular epidemiology of MDR in NTHi. This can benefit the monitoring of drug resistance trends in NTHi and the adequate medical management of patients with NTHi infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-023-02926-6.