Cargando…

Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole

BACKGROUND: Non-typeable Haemophilus influenzae (NTHi) has become the major cause of invasive H. influenzae diseases in the post-H. influenzae type b vaccine era. The emergence of multidrug-resistant (MDR) NTHi is a growing public health problem. Herein, we investigated the molecular basis of MDR in...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Pei-Yi, Cheng, Wei-Hung, Ho, Cheng-Hsun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320927/
https://www.ncbi.nlm.nih.gov/pubmed/37407940
http://dx.doi.org/10.1186/s12866-023-02926-6
_version_ 1785068531107233792
author Su, Pei-Yi
Cheng, Wei-Hung
Ho, Cheng-Hsun
author_facet Su, Pei-Yi
Cheng, Wei-Hung
Ho, Cheng-Hsun
author_sort Su, Pei-Yi
collection PubMed
description BACKGROUND: Non-typeable Haemophilus influenzae (NTHi) has become the major cause of invasive H. influenzae diseases in the post-H. influenzae type b vaccine era. The emergence of multidrug-resistant (MDR) NTHi is a growing public health problem. Herein, we investigated the molecular basis of MDR in NTHi. The isolated NTHi were subjected to antimicrobial susceptibility testing for 12 agents. Whole genome and plasmid sequencing were conducted and analyzed to identify significant genetic variations and plasmid-encoded genes conferred antibiotic resistance. RESULTS: Thirteen (50%) MDR NTHi isolates were obtained; of these, 92.3% were non-susceptible to ampicillin, 30.8% to amoxicillin-clavulanate, 61.5% to cefuroxime, 61.5% to ciprofloxacin/levofloxacin, 92.3% to trimethoprim-sulfamethoxazole, 30.8% to tetracycline, and 7.7% to azithromycin. Eight ampicillin-resistant isolates were β-lactamase positive; of these, 6 carried bla(TEM-1) and 2 carried bla(ROB-1), whereas 4 were β-lactamase negative. Genetic variations in mrdA, mepA, and pbpG were correlated with amoxicillin-clavulanate non-susceptibility, whereas variations in ftsI and lpoA conferred cefuroxime resistance. Five variations in gyrA, 2 in gyrB, 3 in parC, 1 in parE, and 1 in the parC-parE intergenic region were associated with levofloxacin/ciprofloxacin non-susceptibility. Among these genes, 8 variations were linked to high-level levofloxacin resistance. Six variations in folA were associated with trimethoprim-sulfamethoxazole resistance. Plasmid-bearing tet(B) and mef(A) genes were responsible for tetracycline and azithromycin resistance in 4 and 1 MDR isolates, respectively. CONCLUSIONS: This study clarified the molecular epidemiology of MDR in NTHi. This can benefit the monitoring of drug resistance trends in NTHi and the adequate medical management of patients with NTHi infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-023-02926-6.
format Online
Article
Text
id pubmed-10320927
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-103209272023-07-06 Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole Su, Pei-Yi Cheng, Wei-Hung Ho, Cheng-Hsun BMC Microbiol Research BACKGROUND: Non-typeable Haemophilus influenzae (NTHi) has become the major cause of invasive H. influenzae diseases in the post-H. influenzae type b vaccine era. The emergence of multidrug-resistant (MDR) NTHi is a growing public health problem. Herein, we investigated the molecular basis of MDR in NTHi. The isolated NTHi were subjected to antimicrobial susceptibility testing for 12 agents. Whole genome and plasmid sequencing were conducted and analyzed to identify significant genetic variations and plasmid-encoded genes conferred antibiotic resistance. RESULTS: Thirteen (50%) MDR NTHi isolates were obtained; of these, 92.3% were non-susceptible to ampicillin, 30.8% to amoxicillin-clavulanate, 61.5% to cefuroxime, 61.5% to ciprofloxacin/levofloxacin, 92.3% to trimethoprim-sulfamethoxazole, 30.8% to tetracycline, and 7.7% to azithromycin. Eight ampicillin-resistant isolates were β-lactamase positive; of these, 6 carried bla(TEM-1) and 2 carried bla(ROB-1), whereas 4 were β-lactamase negative. Genetic variations in mrdA, mepA, and pbpG were correlated with amoxicillin-clavulanate non-susceptibility, whereas variations in ftsI and lpoA conferred cefuroxime resistance. Five variations in gyrA, 2 in gyrB, 3 in parC, 1 in parE, and 1 in the parC-parE intergenic region were associated with levofloxacin/ciprofloxacin non-susceptibility. Among these genes, 8 variations were linked to high-level levofloxacin resistance. Six variations in folA were associated with trimethoprim-sulfamethoxazole resistance. Plasmid-bearing tet(B) and mef(A) genes were responsible for tetracycline and azithromycin resistance in 4 and 1 MDR isolates, respectively. CONCLUSIONS: This study clarified the molecular epidemiology of MDR in NTHi. This can benefit the monitoring of drug resistance trends in NTHi and the adequate medical management of patients with NTHi infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-023-02926-6. BioMed Central 2023-07-05 /pmc/articles/PMC10320927/ /pubmed/37407940 http://dx.doi.org/10.1186/s12866-023-02926-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Su, Pei-Yi
Cheng, Wei-Hung
Ho, Cheng-Hsun
Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole
title Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole
title_full Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole
title_fullStr Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole
title_full_unstemmed Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole
title_short Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole
title_sort molecular characterization of multidrug-resistant non-typeable haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320927/
https://www.ncbi.nlm.nih.gov/pubmed/37407940
http://dx.doi.org/10.1186/s12866-023-02926-6
work_keys_str_mv AT supeiyi molecularcharacterizationofmultidrugresistantnontypeablehaemophilusinfluenzaewithhighlevelresistancetocefuroximelevofloxacinandtrimethoprimsulfamethoxazole
AT chengweihung molecularcharacterizationofmultidrugresistantnontypeablehaemophilusinfluenzaewithhighlevelresistancetocefuroximelevofloxacinandtrimethoprimsulfamethoxazole
AT hochenghsun molecularcharacterizationofmultidrugresistantnontypeablehaemophilusinfluenzaewithhighlevelresistancetocefuroximelevofloxacinandtrimethoprimsulfamethoxazole