Cargando…

The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort

BACKGROUND: Preoperative prediction of prolonged postoperative opioid use (PPOU) after total knee arthroplasty (TKA) could identify high-risk patients for increased surveillance. The Skeletal Oncology Research Group machine learning algorithm (SORG-MLA) has been tested internally while lacking exter...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Cheng-Chen, Huang, Chuan-Ching, Lin, Ching-Wei, Ogink, Paul T., Su, Chih-Chi, Chen, Shin-Fu, Yen, Mao-Hsu, Verlaan, Jorrit-Jan, Schwab, Joseph H., Wang, Chen-Ti, Groot, Olivier Q., Hu, Ming-Hsiao, Chiang, Hongsen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320986/
https://www.ncbi.nlm.nih.gov/pubmed/37408033
http://dx.doi.org/10.1186/s12891-023-06667-5
_version_ 1785068544828899328
author Tsai, Cheng-Chen
Huang, Chuan-Ching
Lin, Ching-Wei
Ogink, Paul T.
Su, Chih-Chi
Chen, Shin-Fu
Yen, Mao-Hsu
Verlaan, Jorrit-Jan
Schwab, Joseph H.
Wang, Chen-Ti
Groot, Olivier Q.
Hu, Ming-Hsiao
Chiang, Hongsen
author_facet Tsai, Cheng-Chen
Huang, Chuan-Ching
Lin, Ching-Wei
Ogink, Paul T.
Su, Chih-Chi
Chen, Shin-Fu
Yen, Mao-Hsu
Verlaan, Jorrit-Jan
Schwab, Joseph H.
Wang, Chen-Ti
Groot, Olivier Q.
Hu, Ming-Hsiao
Chiang, Hongsen
author_sort Tsai, Cheng-Chen
collection PubMed
description BACKGROUND: Preoperative prediction of prolonged postoperative opioid use (PPOU) after total knee arthroplasty (TKA) could identify high-risk patients for increased surveillance. The Skeletal Oncology Research Group machine learning algorithm (SORG-MLA) has been tested internally while lacking external support to assess its generalizability. The aims of this study were to externally validate this algorithm in an Asian cohort and to identify other potential independent factors for PPOU. METHODS: In a tertiary center in Taiwan, 3,495 patients receiving TKA from 2010–2018 were included. Baseline characteristics were compared between the external validation cohort and the original developmental cohorts. Discrimination (area under receiver operating characteristic curve [AUROC] and precision-recall curve [AUPRC]), calibration, overall performance (Brier score), and decision curve analysis (DCA) were applied to assess the model performance. A multivariable logistic regression was used to evaluate other potential prognostic factors. RESULTS: There were notable differences in baseline characteristics between the validation and the development cohort. Despite these variations, the SORG-MLA (https://sorg-apps.shinyapps.io/tjaopioid/) remained its good discriminatory ability (AUROC, 0.75; AUPRC, 0.34) and good overall performance (Brier score, 0.029; null model Brier score, 0.032). The algorithm could bring clinical benefit in DCA while somewhat overestimating the probability of prolonged opioid use. Preoperative acetaminophen use was an independent factor to predict PPOU (odds ratio, 2.05). CONCLUSIONS: The SORG-MLA retained its discriminatory ability and good overall performance despite the different pharmaceutical regulations. The algorithm could be used to identify high-risk patients and tailor personalized prevention policy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12891-023-06667-5.
format Online
Article
Text
id pubmed-10320986
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-103209862023-07-06 The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort Tsai, Cheng-Chen Huang, Chuan-Ching Lin, Ching-Wei Ogink, Paul T. Su, Chih-Chi Chen, Shin-Fu Yen, Mao-Hsu Verlaan, Jorrit-Jan Schwab, Joseph H. Wang, Chen-Ti Groot, Olivier Q. Hu, Ming-Hsiao Chiang, Hongsen BMC Musculoskelet Disord Research BACKGROUND: Preoperative prediction of prolonged postoperative opioid use (PPOU) after total knee arthroplasty (TKA) could identify high-risk patients for increased surveillance. The Skeletal Oncology Research Group machine learning algorithm (SORG-MLA) has been tested internally while lacking external support to assess its generalizability. The aims of this study were to externally validate this algorithm in an Asian cohort and to identify other potential independent factors for PPOU. METHODS: In a tertiary center in Taiwan, 3,495 patients receiving TKA from 2010–2018 were included. Baseline characteristics were compared between the external validation cohort and the original developmental cohorts. Discrimination (area under receiver operating characteristic curve [AUROC] and precision-recall curve [AUPRC]), calibration, overall performance (Brier score), and decision curve analysis (DCA) were applied to assess the model performance. A multivariable logistic regression was used to evaluate other potential prognostic factors. RESULTS: There were notable differences in baseline characteristics between the validation and the development cohort. Despite these variations, the SORG-MLA (https://sorg-apps.shinyapps.io/tjaopioid/) remained its good discriminatory ability (AUROC, 0.75; AUPRC, 0.34) and good overall performance (Brier score, 0.029; null model Brier score, 0.032). The algorithm could bring clinical benefit in DCA while somewhat overestimating the probability of prolonged opioid use. Preoperative acetaminophen use was an independent factor to predict PPOU (odds ratio, 2.05). CONCLUSIONS: The SORG-MLA retained its discriminatory ability and good overall performance despite the different pharmaceutical regulations. The algorithm could be used to identify high-risk patients and tailor personalized prevention policy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12891-023-06667-5. BioMed Central 2023-07-05 /pmc/articles/PMC10320986/ /pubmed/37408033 http://dx.doi.org/10.1186/s12891-023-06667-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Tsai, Cheng-Chen
Huang, Chuan-Ching
Lin, Ching-Wei
Ogink, Paul T.
Su, Chih-Chi
Chen, Shin-Fu
Yen, Mao-Hsu
Verlaan, Jorrit-Jan
Schwab, Joseph H.
Wang, Chen-Ti
Groot, Olivier Q.
Hu, Ming-Hsiao
Chiang, Hongsen
The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort
title The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort
title_full The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort
title_fullStr The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort
title_full_unstemmed The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort
title_short The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort
title_sort skeletal oncology research group machine learning algorithm (sorg-mla) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a taiwanese cohort
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320986/
https://www.ncbi.nlm.nih.gov/pubmed/37408033
http://dx.doi.org/10.1186/s12891-023-06667-5
work_keys_str_mv AT tsaichengchen theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT huangchuanching theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT linchingwei theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT oginkpault theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT suchihchi theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT chenshinfu theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT yenmaohsu theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT verlaanjorritjan theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT schwabjosephh theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT wangchenti theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT grootolivierq theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT huminghsiao theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT chianghongsen theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT tsaichengchen skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT huangchuanching skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT linchingwei skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT oginkpault skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT suchihchi skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT chenshinfu skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT yenmaohsu skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT verlaanjorritjan skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT schwabjosephh skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT wangchenti skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT grootolivierq skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT huminghsiao skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort
AT chianghongsen skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort