Cargando…
The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort
BACKGROUND: Preoperative prediction of prolonged postoperative opioid use (PPOU) after total knee arthroplasty (TKA) could identify high-risk patients for increased surveillance. The Skeletal Oncology Research Group machine learning algorithm (SORG-MLA) has been tested internally while lacking exter...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320986/ https://www.ncbi.nlm.nih.gov/pubmed/37408033 http://dx.doi.org/10.1186/s12891-023-06667-5 |
_version_ | 1785068544828899328 |
---|---|
author | Tsai, Cheng-Chen Huang, Chuan-Ching Lin, Ching-Wei Ogink, Paul T. Su, Chih-Chi Chen, Shin-Fu Yen, Mao-Hsu Verlaan, Jorrit-Jan Schwab, Joseph H. Wang, Chen-Ti Groot, Olivier Q. Hu, Ming-Hsiao Chiang, Hongsen |
author_facet | Tsai, Cheng-Chen Huang, Chuan-Ching Lin, Ching-Wei Ogink, Paul T. Su, Chih-Chi Chen, Shin-Fu Yen, Mao-Hsu Verlaan, Jorrit-Jan Schwab, Joseph H. Wang, Chen-Ti Groot, Olivier Q. Hu, Ming-Hsiao Chiang, Hongsen |
author_sort | Tsai, Cheng-Chen |
collection | PubMed |
description | BACKGROUND: Preoperative prediction of prolonged postoperative opioid use (PPOU) after total knee arthroplasty (TKA) could identify high-risk patients for increased surveillance. The Skeletal Oncology Research Group machine learning algorithm (SORG-MLA) has been tested internally while lacking external support to assess its generalizability. The aims of this study were to externally validate this algorithm in an Asian cohort and to identify other potential independent factors for PPOU. METHODS: In a tertiary center in Taiwan, 3,495 patients receiving TKA from 2010–2018 were included. Baseline characteristics were compared between the external validation cohort and the original developmental cohorts. Discrimination (area under receiver operating characteristic curve [AUROC] and precision-recall curve [AUPRC]), calibration, overall performance (Brier score), and decision curve analysis (DCA) were applied to assess the model performance. A multivariable logistic regression was used to evaluate other potential prognostic factors. RESULTS: There were notable differences in baseline characteristics between the validation and the development cohort. Despite these variations, the SORG-MLA (https://sorg-apps.shinyapps.io/tjaopioid/) remained its good discriminatory ability (AUROC, 0.75; AUPRC, 0.34) and good overall performance (Brier score, 0.029; null model Brier score, 0.032). The algorithm could bring clinical benefit in DCA while somewhat overestimating the probability of prolonged opioid use. Preoperative acetaminophen use was an independent factor to predict PPOU (odds ratio, 2.05). CONCLUSIONS: The SORG-MLA retained its discriminatory ability and good overall performance despite the different pharmaceutical regulations. The algorithm could be used to identify high-risk patients and tailor personalized prevention policy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12891-023-06667-5. |
format | Online Article Text |
id | pubmed-10320986 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-103209862023-07-06 The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort Tsai, Cheng-Chen Huang, Chuan-Ching Lin, Ching-Wei Ogink, Paul T. Su, Chih-Chi Chen, Shin-Fu Yen, Mao-Hsu Verlaan, Jorrit-Jan Schwab, Joseph H. Wang, Chen-Ti Groot, Olivier Q. Hu, Ming-Hsiao Chiang, Hongsen BMC Musculoskelet Disord Research BACKGROUND: Preoperative prediction of prolonged postoperative opioid use (PPOU) after total knee arthroplasty (TKA) could identify high-risk patients for increased surveillance. The Skeletal Oncology Research Group machine learning algorithm (SORG-MLA) has been tested internally while lacking external support to assess its generalizability. The aims of this study were to externally validate this algorithm in an Asian cohort and to identify other potential independent factors for PPOU. METHODS: In a tertiary center in Taiwan, 3,495 patients receiving TKA from 2010–2018 were included. Baseline characteristics were compared between the external validation cohort and the original developmental cohorts. Discrimination (area under receiver operating characteristic curve [AUROC] and precision-recall curve [AUPRC]), calibration, overall performance (Brier score), and decision curve analysis (DCA) were applied to assess the model performance. A multivariable logistic regression was used to evaluate other potential prognostic factors. RESULTS: There were notable differences in baseline characteristics between the validation and the development cohort. Despite these variations, the SORG-MLA (https://sorg-apps.shinyapps.io/tjaopioid/) remained its good discriminatory ability (AUROC, 0.75; AUPRC, 0.34) and good overall performance (Brier score, 0.029; null model Brier score, 0.032). The algorithm could bring clinical benefit in DCA while somewhat overestimating the probability of prolonged opioid use. Preoperative acetaminophen use was an independent factor to predict PPOU (odds ratio, 2.05). CONCLUSIONS: The SORG-MLA retained its discriminatory ability and good overall performance despite the different pharmaceutical regulations. The algorithm could be used to identify high-risk patients and tailor personalized prevention policy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12891-023-06667-5. BioMed Central 2023-07-05 /pmc/articles/PMC10320986/ /pubmed/37408033 http://dx.doi.org/10.1186/s12891-023-06667-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Tsai, Cheng-Chen Huang, Chuan-Ching Lin, Ching-Wei Ogink, Paul T. Su, Chih-Chi Chen, Shin-Fu Yen, Mao-Hsu Verlaan, Jorrit-Jan Schwab, Joseph H. Wang, Chen-Ti Groot, Olivier Q. Hu, Ming-Hsiao Chiang, Hongsen The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort |
title | The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort |
title_full | The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort |
title_fullStr | The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort |
title_full_unstemmed | The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort |
title_short | The Skeletal Oncology Research Group Machine Learning Algorithm (SORG-MLA) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a Taiwanese cohort |
title_sort | skeletal oncology research group machine learning algorithm (sorg-mla) for predicting prolonged postoperative opioid prescription after total knee arthroplasty: an international validation study using 3,495 patients from a taiwanese cohort |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320986/ https://www.ncbi.nlm.nih.gov/pubmed/37408033 http://dx.doi.org/10.1186/s12891-023-06667-5 |
work_keys_str_mv | AT tsaichengchen theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT huangchuanching theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT linchingwei theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT oginkpault theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT suchihchi theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT chenshinfu theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT yenmaohsu theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT verlaanjorritjan theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT schwabjosephh theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT wangchenti theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT grootolivierq theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT huminghsiao theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT chianghongsen theskeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT tsaichengchen skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT huangchuanching skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT linchingwei skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT oginkpault skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT suchihchi skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT chenshinfu skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT yenmaohsu skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT verlaanjorritjan skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT schwabjosephh skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT wangchenti skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT grootolivierq skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT huminghsiao skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort AT chianghongsen skeletaloncologyresearchgroupmachinelearningalgorithmsorgmlaforpredictingprolongedpostoperativeopioidprescriptionaftertotalkneearthroplastyaninternationalvalidationstudyusing3495patientsfromataiwanesecohort |