Cargando…

Identification of miRnas with possible prognostic roles for HAM/TSP

Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropic spastic paraparesis (HAM/TSP) is an insidiously progressive spinal cord disease for which there is no effective treatment. There is great interest in developing potential biomarkers to predict the pathogenesis of HAM/TSP di...

Descripción completa

Detalles Bibliográficos
Autores principales: de Souza, Daniela Raguer Valadão, Pessôa, Rodrigo, Nukui, Youko, Pereira, Juliana, Marcusso, Rosa Nascimento, de Oliveira, Augusto César Penalva, Casseb, Jorge, da Silva Duarte, Alberto José, Clissa, Patricia Bianca, Sanabani, Sabri Saeed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321194/
https://www.ncbi.nlm.nih.gov/pubmed/37394816
http://dx.doi.org/10.1080/21505594.2023.2230015
Descripción
Sumario:Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropic spastic paraparesis (HAM/TSP) is an insidiously progressive spinal cord disease for which there is no effective treatment. There is great interest in developing potential biomarkers to predict the pathogenesis of HAM/TSP disease. In this study, Illumina Massive Parallel Sequencing (MPS) technology was used to investigate the cellular global noncoding RNAome expression profile in HAM/TSP patients (n = 10), asymptomatic HTLV-1-infected carriers (ASP, n = 8), and a second group of healthy controls (n = 5). Various bioinformatics tools were used to align, annotate, and profile the sRNA-MPS reads. Among the 402 sRNAs detected, 251 were known and 50 were potentially novel sRNAs in the HAM and ASP groups compared with the HC group. Sixty-eight known sRNAs were significantly different between the ASP and HAM groups. Eighty-eight mature miRNAs were downregulated in subjects from HAM compared with ASP. Three of these miRs (hsa-miR-185-5p, 32-5p, and 192-5p) have the potential to be used as biomarkers for predicting the pathogenesis of HAM/TSP. The seven most deregulated miRs target genes have been associated with a variety of biological processes and molecular functions. The reactome pathways relevant to our findings provide a rich source of data and offer the opportunity to better understand sRNA regulation and function in HTLV-1 pathophysiology. To the best of our knowledge, this study is the first to demonstrate evaluates sRNAs in HTLV-1 patients with HAM/TSP.