Cargando…
Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical–radical recombination pathway
Flavin-based photocatalysts such as riboflavin tetraacetate (RFT) serve as a robust platform for light-mediated protein labelling via phenoxy radical-mediated tyrosine–biotin phenol coupling on live cells. To gain insight into this coupling reaction, we conducted detailed mechanistic analysis for RF...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321502/ https://www.ncbi.nlm.nih.gov/pubmed/37416718 http://dx.doi.org/10.1039/d3sc00638g |
_version_ | 1785068627089686528 |
---|---|
author | Hope, Taylor O. Reyes-Robles, Tamara Ryu, Keun Ah Mauries, Steven Removski, Nicole Maisonneuve, Jacinthe Oslund, Rob C. Fadeyi, Olugbeminiyi O. Frenette, Mathieu |
author_facet | Hope, Taylor O. Reyes-Robles, Tamara Ryu, Keun Ah Mauries, Steven Removski, Nicole Maisonneuve, Jacinthe Oslund, Rob C. Fadeyi, Olugbeminiyi O. Frenette, Mathieu |
author_sort | Hope, Taylor O. |
collection | PubMed |
description | Flavin-based photocatalysts such as riboflavin tetraacetate (RFT) serve as a robust platform for light-mediated protein labelling via phenoxy radical-mediated tyrosine–biotin phenol coupling on live cells. To gain insight into this coupling reaction, we conducted detailed mechanistic analysis for RFT-photomediated activation of phenols for tyrosine labelling. Contrary to previously proposed mechanisms, we find that the initial covalent binding step between the tag and tyrosine is not radical addition, but rather radical–radical recombination. The proposed mechanism may also explain the mecha-nism of other reported tyrosine-tagging approaches. Competitive kinetics experiments show that phenoxyl radicals are generated with several reactive intermediates in the proposed mechanism—primarily with the excited riboflavin-photocatalyst or singlet oxygen—and these multiple pathways for phenoxyl radical generation from phenols increase the likelihood of radical–radical recombination. |
format | Online Article Text |
id | pubmed-10321502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-103215022023-07-06 Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical–radical recombination pathway Hope, Taylor O. Reyes-Robles, Tamara Ryu, Keun Ah Mauries, Steven Removski, Nicole Maisonneuve, Jacinthe Oslund, Rob C. Fadeyi, Olugbeminiyi O. Frenette, Mathieu Chem Sci Chemistry Flavin-based photocatalysts such as riboflavin tetraacetate (RFT) serve as a robust platform for light-mediated protein labelling via phenoxy radical-mediated tyrosine–biotin phenol coupling on live cells. To gain insight into this coupling reaction, we conducted detailed mechanistic analysis for RFT-photomediated activation of phenols for tyrosine labelling. Contrary to previously proposed mechanisms, we find that the initial covalent binding step between the tag and tyrosine is not radical addition, but rather radical–radical recombination. The proposed mechanism may also explain the mecha-nism of other reported tyrosine-tagging approaches. Competitive kinetics experiments show that phenoxyl radicals are generated with several reactive intermediates in the proposed mechanism—primarily with the excited riboflavin-photocatalyst or singlet oxygen—and these multiple pathways for phenoxyl radical generation from phenols increase the likelihood of radical–radical recombination. The Royal Society of Chemistry 2023-05-17 /pmc/articles/PMC10321502/ /pubmed/37416718 http://dx.doi.org/10.1039/d3sc00638g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Hope, Taylor O. Reyes-Robles, Tamara Ryu, Keun Ah Mauries, Steven Removski, Nicole Maisonneuve, Jacinthe Oslund, Rob C. Fadeyi, Olugbeminiyi O. Frenette, Mathieu Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical–radical recombination pathway |
title | Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical–radical recombination pathway |
title_full | Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical–radical recombination pathway |
title_fullStr | Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical–radical recombination pathway |
title_full_unstemmed | Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical–radical recombination pathway |
title_short | Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical–radical recombination pathway |
title_sort | targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical–radical recombination pathway |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321502/ https://www.ncbi.nlm.nih.gov/pubmed/37416718 http://dx.doi.org/10.1039/d3sc00638g |
work_keys_str_mv | AT hopetayloro targetedproximitylabellingofproteintyrosinesviaflavindependentphotoredoxcatalysiswithmechanisticevidenceforaradicalradicalrecombinationpathway AT reyesroblestamara targetedproximitylabellingofproteintyrosinesviaflavindependentphotoredoxcatalysiswithmechanisticevidenceforaradicalradicalrecombinationpathway AT ryukeunah targetedproximitylabellingofproteintyrosinesviaflavindependentphotoredoxcatalysiswithmechanisticevidenceforaradicalradicalrecombinationpathway AT mauriessteven targetedproximitylabellingofproteintyrosinesviaflavindependentphotoredoxcatalysiswithmechanisticevidenceforaradicalradicalrecombinationpathway AT removskinicole targetedproximitylabellingofproteintyrosinesviaflavindependentphotoredoxcatalysiswithmechanisticevidenceforaradicalradicalrecombinationpathway AT maisonneuvejacinthe targetedproximitylabellingofproteintyrosinesviaflavindependentphotoredoxcatalysiswithmechanisticevidenceforaradicalradicalrecombinationpathway AT oslundrobc targetedproximitylabellingofproteintyrosinesviaflavindependentphotoredoxcatalysiswithmechanisticevidenceforaradicalradicalrecombinationpathway AT fadeyiolugbeminiyio targetedproximitylabellingofproteintyrosinesviaflavindependentphotoredoxcatalysiswithmechanisticevidenceforaradicalradicalrecombinationpathway AT frenettemathieu targetedproximitylabellingofproteintyrosinesviaflavindependentphotoredoxcatalysiswithmechanisticevidenceforaradicalradicalrecombinationpathway |