Cargando…
Cobalt-catalyzed enantioselective C–H/N–H annulation of aryl sulfonamides with allenes or alkynes: facile access to C–N axially chiral sultams
Herein we report a cobalt-catalyzed enantioselective C–H/N–H annulation of aryl sulfonamides with allenes and alkynes, using either chemical or electrochemical oxidation. By using O(2) as the oxidant, the annulation with allenes proceeds efficiently with a low catalyst/ligand loading of 5 mol% and t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321536/ https://www.ncbi.nlm.nih.gov/pubmed/37416705 http://dx.doi.org/10.1039/d3sc01787g |
Sumario: | Herein we report a cobalt-catalyzed enantioselective C–H/N–H annulation of aryl sulfonamides with allenes and alkynes, using either chemical or electrochemical oxidation. By using O(2) as the oxidant, the annulation with allenes proceeds efficiently with a low catalyst/ligand loading of 5 mol% and tolerates a wide range of allenes, including 2,3-butadienoate, allenylphosphonate, and phenylallene, resulting in C–N axially chiral sultams with high enantio-, regio-, and position selectivities. The annulation with alkynes also exhibits excellent enantiocontrol (up to >99% ee) with a variety of functional aryl sulfonamides, and internal and terminal alkynes. Furthermore, electrochemical oxidative C–H/N–H annulation with alkynes is achieved in a simple undivided cell, demonstrating the versatility and robustness of the cobalt/Salox system. The gram-scale synthesis and asymmetric catalysis further highlight the practical utility of this method. |
---|