Cargando…
The VIPR2-selective antagonist KS-133 changes macrophage polarization and exerts potent anti-tumor effects as a single agent and in combination with an anti-PD-1 antibody
We have previously demonstrated that KS-133 is a specific and potent antagonist of vasoactive intestinal peptide receptor 2 (VIPR2). We have also shown that vasoactive intestinal peptide–VIPR2 signaling affects the polarity and activation of tumor-associated macrophages, which is another strategy fo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321640/ https://www.ncbi.nlm.nih.gov/pubmed/37405999 http://dx.doi.org/10.1371/journal.pone.0286651 |
Sumario: | We have previously demonstrated that KS-133 is a specific and potent antagonist of vasoactive intestinal peptide receptor 2 (VIPR2). We have also shown that vasoactive intestinal peptide–VIPR2 signaling affects the polarity and activation of tumor-associated macrophages, which is another strategy for cancer immunotherapy apart from the activation of effector T cells. In this study, we aimed to examine whether the selective blockade of VIPR2 by KS-133 changes the polarization of macrophages and induces anti-tumor effects. In the presence of KS-133, genetic markers indicative of tumor-aggressive M1-type macrophages were upregulated, and conversely, those of tumor-supportive M2-type macrophages were downregulated. Daily subcutaneous administration of KS-133 tended to suppress the growth of CT26 tumors (murine colorectal cancer-derived cells) implanted subcutaneously in Balb/c mice. To improve the pharmacological efficacy and reduce the number of doses, we examined a nanoformulation of KS-133 using the US Food and Drug Administration-approved pharmaceutical additive surfactant Cremophor® EL. KS-133 nanoparticles (NPs) were approximately 15 nm in size and stable at 4°C after preparation. Meanwhile, KS-133 was gradually released from the NPs as the temperature was increased. Subcutaneous administration of KS-133 NPs once every 3 days had stronger anti-tumor effects than daily subcutaneous administration of KS-133. Furthermore, KS-133 NPs significantly enhanced the pharmacological efficacy of an immune checkpoint-inhibiting anti-PD-1 antibody. A pharmacokinetic study suggested that the enhancement of anti-tumor activity was associated with improvement of the pharmacokinetic profile of KS-133 upon nanoformulation. Our data have revealed that specific blockade of VIPR2 by KS-133 has therapeutic potential for cancer both alone and in combination with immune checkpoint inhibitors. |
---|