Cargando…
Synergetic positivity of loss and noise in nonlinear non-Hermitian resonators
Loss and noise are usually undesirable in electronics and optics, which are generally mitigated by separate ways in the cost of bulkiness and complexity. Recent studies of non-Hermitian systems have shown a positive role of loss in various loss-induced counterintuitive phenomena, while noise still r...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321741/ https://www.ncbi.nlm.nih.gov/pubmed/37406112 http://dx.doi.org/10.1126/sciadv.adi0562 |
Sumario: | Loss and noise are usually undesirable in electronics and optics, which are generally mitigated by separate ways in the cost of bulkiness and complexity. Recent studies of non-Hermitian systems have shown a positive role of loss in various loss-induced counterintuitive phenomena, while noise still remains a fundamental challenge in non-Hermitian systems particularly for sensing and lasing. Here, we simultaneously reverse the detrimental loss and noise and reveal their coordinated positive role in nonlinear non-Hermitian resonators. This synergetic effect leads to the amplified spectrum intensity with suppressed spectrum fluctuations after adding both loss and noise. We reveal the underlying mechanism of nonlinearity-induced bistability engineered by loss in the non-Hermitian resonators and noise-loss enhanced coherence of eigenfrequency hopping driven by temporal modulation of detuning. Our findings enrich counterintuitive non-Hermitian physics and lead to a general recipe to overcome loss and noise from electronics to photonics with applications from sensing to communication. |
---|