Cargando…
In vivo metallophilic self-assembly of a light-activated anticancer drug
Self-assembling molecular drugs combine the easy preparation typical of small-molecule chemotherapy and the tumour-targeting properties of drug–nanoparticle conjugates. However, they require a supramolecular interaction that survives the complex environment of a living animal. Here we report that th...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322715/ https://www.ncbi.nlm.nih.gov/pubmed/37169984 http://dx.doi.org/10.1038/s41557-023-01199-w |
_version_ | 1785068819868286976 |
---|---|
author | Zhou, Xue-Quan Wang, Peiyuan Ramu, Vadde Zhang, Liyan Jiang, Suhua Li, Xuezhao Abyar, Selda Papadopoulou, Panagiota Shao, Yang Bretin, Ludovic Siegler, Maxime A. Buda, Francesco Kros, Alexander Fan, Jiangli Peng, Xiaojun Sun, Wen Bonnet, Sylvestre |
author_facet | Zhou, Xue-Quan Wang, Peiyuan Ramu, Vadde Zhang, Liyan Jiang, Suhua Li, Xuezhao Abyar, Selda Papadopoulou, Panagiota Shao, Yang Bretin, Ludovic Siegler, Maxime A. Buda, Francesco Kros, Alexander Fan, Jiangli Peng, Xiaojun Sun, Wen Bonnet, Sylvestre |
author_sort | Zhou, Xue-Quan |
collection | PubMed |
description | Self-assembling molecular drugs combine the easy preparation typical of small-molecule chemotherapy and the tumour-targeting properties of drug–nanoparticle conjugates. However, they require a supramolecular interaction that survives the complex environment of a living animal. Here we report that the metallophilic interaction between cyclometalated palladium complexes generates supramolecular nanostructures in living mice that have a long circulation time (over 12 h) and efficient tumour accumulation rate (up to 10.2% of the injected dose per gram) in a skin melanoma tumour model. Green light activation leads to efficient tumour destruction due to the type I photodynamic effect generated by the self-assembled palladium complexes, as demonstrated in vitro by an up to 96-fold cytotoxicity increase upon irradiation. This work demonstrates that metallophilic interactions are well suited to generating stable supramolecular nanotherapeutics in vivo with exceptional tumour-targeting properties. [Image: see text] |
format | Online Article Text |
id | pubmed-10322715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-103227152023-07-07 In vivo metallophilic self-assembly of a light-activated anticancer drug Zhou, Xue-Quan Wang, Peiyuan Ramu, Vadde Zhang, Liyan Jiang, Suhua Li, Xuezhao Abyar, Selda Papadopoulou, Panagiota Shao, Yang Bretin, Ludovic Siegler, Maxime A. Buda, Francesco Kros, Alexander Fan, Jiangli Peng, Xiaojun Sun, Wen Bonnet, Sylvestre Nat Chem Article Self-assembling molecular drugs combine the easy preparation typical of small-molecule chemotherapy and the tumour-targeting properties of drug–nanoparticle conjugates. However, they require a supramolecular interaction that survives the complex environment of a living animal. Here we report that the metallophilic interaction between cyclometalated palladium complexes generates supramolecular nanostructures in living mice that have a long circulation time (over 12 h) and efficient tumour accumulation rate (up to 10.2% of the injected dose per gram) in a skin melanoma tumour model. Green light activation leads to efficient tumour destruction due to the type I photodynamic effect generated by the self-assembled palladium complexes, as demonstrated in vitro by an up to 96-fold cytotoxicity increase upon irradiation. This work demonstrates that metallophilic interactions are well suited to generating stable supramolecular nanotherapeutics in vivo with exceptional tumour-targeting properties. [Image: see text] Nature Publishing Group UK 2023-05-11 2023 /pmc/articles/PMC10322715/ /pubmed/37169984 http://dx.doi.org/10.1038/s41557-023-01199-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhou, Xue-Quan Wang, Peiyuan Ramu, Vadde Zhang, Liyan Jiang, Suhua Li, Xuezhao Abyar, Selda Papadopoulou, Panagiota Shao, Yang Bretin, Ludovic Siegler, Maxime A. Buda, Francesco Kros, Alexander Fan, Jiangli Peng, Xiaojun Sun, Wen Bonnet, Sylvestre In vivo metallophilic self-assembly of a light-activated anticancer drug |
title | In vivo metallophilic self-assembly of a light-activated anticancer drug |
title_full | In vivo metallophilic self-assembly of a light-activated anticancer drug |
title_fullStr | In vivo metallophilic self-assembly of a light-activated anticancer drug |
title_full_unstemmed | In vivo metallophilic self-assembly of a light-activated anticancer drug |
title_short | In vivo metallophilic self-assembly of a light-activated anticancer drug |
title_sort | in vivo metallophilic self-assembly of a light-activated anticancer drug |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322715/ https://www.ncbi.nlm.nih.gov/pubmed/37169984 http://dx.doi.org/10.1038/s41557-023-01199-w |
work_keys_str_mv | AT zhouxuequan invivometallophilicselfassemblyofalightactivatedanticancerdrug AT wangpeiyuan invivometallophilicselfassemblyofalightactivatedanticancerdrug AT ramuvadde invivometallophilicselfassemblyofalightactivatedanticancerdrug AT zhangliyan invivometallophilicselfassemblyofalightactivatedanticancerdrug AT jiangsuhua invivometallophilicselfassemblyofalightactivatedanticancerdrug AT lixuezhao invivometallophilicselfassemblyofalightactivatedanticancerdrug AT abyarselda invivometallophilicselfassemblyofalightactivatedanticancerdrug AT papadopouloupanagiota invivometallophilicselfassemblyofalightactivatedanticancerdrug AT shaoyang invivometallophilicselfassemblyofalightactivatedanticancerdrug AT bretinludovic invivometallophilicselfassemblyofalightactivatedanticancerdrug AT sieglermaximea invivometallophilicselfassemblyofalightactivatedanticancerdrug AT budafrancesco invivometallophilicselfassemblyofalightactivatedanticancerdrug AT krosalexander invivometallophilicselfassemblyofalightactivatedanticancerdrug AT fanjiangli invivometallophilicselfassemblyofalightactivatedanticancerdrug AT pengxiaojun invivometallophilicselfassemblyofalightactivatedanticancerdrug AT sunwen invivometallophilicselfassemblyofalightactivatedanticancerdrug AT bonnetsylvestre invivometallophilicselfassemblyofalightactivatedanticancerdrug |