Cargando…

Metabolism and Disposition of the Novel Oral Factor XIa Inhibitor Asundexian in Rats and in Humans

BACKGROUND AND OBJECTIVES: Current anticoagulants pose an increased risk of bleeding. The development of drugs targeting factor XIa, like asundexian, may provide a safer treatment option. A human mass‑balance study was conducted to gain a deeper understanding of the absorption, distribution, metabol...

Descripción completa

Detalles Bibliográficos
Autores principales: Piel, Isabel, Engelen, Anna, Lang, Dieter, Schulz, Simone I., Gerisch, Michael, Brase, Christine, Janssen, Wiebke, Fiebig, Lukas, Heitmeier, Stefan, Kanefendt, Friederike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322790/
https://www.ncbi.nlm.nih.gov/pubmed/37365440
http://dx.doi.org/10.1007/s13318-023-00838-4
Descripción
Sumario:BACKGROUND AND OBJECTIVES: Current anticoagulants pose an increased risk of bleeding. The development of drugs targeting factor XIa, like asundexian, may provide a safer treatment option. A human mass‑balance study was conducted to gain a deeper understanding of the absorption, distribution, metabolism, excretion, and potential for drug–drug interaction of asundexian. Additionally, an overview of the biotransformation and clearance pathways for asundexian in humans and bile-duct cannulated (BDC) rats in vivo, as well as in vitro in hepatocytes of both species, is reported. METHODS: The mass balance, biotransformation, and excretion pathways of asundexian were investigated in six healthy volunteers (single oral dose of 25 mg [(14)C]asundexian) and in BDC rats (intravenous [(14)C]asundexian 1 mg/kg). RESULTS: Overall recovery of radioactivity was 101% for humans (samples collected up to 14 days after dosing), and 97.9% for BDC rats (samples collected in the 24 h after dosing). Radioactivity was mainly excreted into feces in humans (80.3%) and into bile/feces in BDC rats (> 94%). The predominant clearance pathways in humans were amide hydrolysis to metabolite M1 (47%) and non-labeled M9 with subsequent N-acetylation to M10; oxidative biotransformation was a minor pathway (13%). In rats, hydrolysis of the terminal amide to M2 was the predominant pathway. In human plasma, asundexian accounted for 61.0% of total drug-related area under the plasma concentration–time curve (AUC); M10 was the major metabolite (16.4% of the total drug-related AUC). Excretion of unmetabolized drug was a significant clearance pathway in both species (human, ~ 37%; BDC rat, ~ 24%). The near-complete bioavailability of asundexian suggests negligible limitations on absorption and first-pass metabolism. Comparison with radiochromatograms from incubations with human or rat hepatocytes indicated consistency across species and a good overall in vitro/in vivo correlation. CONCLUSIONS: Similar to preclinical experiments, total asundexian-derived radioactivity is cleared quantitatively predominantly via feces. Excretion occurs mainly via amide hydrolysis and as the unchanged drug. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13318-023-00838-4.