Cargando…
Machine learning of atomic dynamics and statistical surface identities in gold nanoparticles
It is known that metal nanoparticles (NPs) may be dynamic and atoms may move within them even at fairly low temperatures. Characterizing such complex dynamics is key for understanding NPs’ properties in realistic regimes, but detailed information on, e.g., the stability, survival, and interconversio...
Autores principales: | Rapetti, Daniele, Delle Piane, Massimo, Cioni, Matteo, Polino, Daniela, Ferrando, Riccardo, Pavan, Giovanni M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322832/ https://www.ncbi.nlm.nih.gov/pubmed/37407706 http://dx.doi.org/10.1038/s42004-023-00936-z |
Ejemplares similares
-
Reconstructing reactivity in dynamic host–guest systems at atomistic resolution: amide hydrolysis under confinement in the cavity of a coordination cage
por: Delle Piane, Massimo, et al.
Publicado: (2022) -
Can Mesoporous Silica Speed Up Degradation of Benzodiazepines? Hints from Quantum Mechanical Investigations
por: Delle Piane, Massimo, et al.
Publicado: (2022) -
Controlling ultrasmall gold nanoparticles with atomic precision
por: Xia, Nan, et al.
Publicado: (2020) -
Molecular “surgery” on a 23-gold-atom nanoparticle
por: Li, Qi, et al.
Publicado: (2017) -
Site‐Specific Wetting of Iron Nanocubes by Gold Atoms in Gas‐Phase Synthesis
por: Vernieres, Jerome, et al.
Publicado: (2019)