Cargando…
Unsupervised feature extraction of aerial images for clustering and understanding hazardous road segments
Aerial image data are becoming more widely available, and analysis techniques based on supervised learning are advancing their use in a wide variety of remote sensing contexts. However, supervised learning requires training datasets which are not always available or easy to construct with aerial ima...
Autores principales: | Francis, John, Bright, Jonathan, Esnaashari, Saba, Hashem, Youmna, Morgan, Deborah, Straub, Vincent J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322896/ https://www.ncbi.nlm.nih.gov/pubmed/37407750 http://dx.doi.org/10.1038/s41598-023-38100-1 |
Ejemplares similares
-
Assessing alternative methods for unsupervised segmentation of urban vegetation in very high-resolution multispectral aerial imagery
por: Lassiter, Allison, et al.
Publicado: (2020) -
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
por: Maji, Pradipta, et al.
Publicado: (2015) -
Correction: Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
Publicado: (2015) -
Unsupervised Hyperspectral Microscopic Image Segmentation Using Deep Embedded Clustering Algorithm
por: Ajay, P., et al.
Publicado: (2022) -
Unsupervised Fault Detection on Unmanned Aerial Vehicles: Encoding and Thresholding Approach †
por: Park, Kyung Ho, et al.
Publicado: (2021)