Cargando…
Out-of-distribution generalization for learning quantum dynamics
Generalization bounds are a critical tool to assess the training data requirements of Quantum Machine Learning (QML). Recent work has established guarantees for in-distribution generalization of quantum neural networks (QNNs), where training and testing data are drawn from the same data distribution...
Autores principales: | Caro, Matthias C., Huang, Hsin-Yuan, Ezzell, Nicholas, Gibbs, Joe, Sornborger, Andrew T., Cincio, Lukasz, Coles, Patrick J., Holmes, Zoë |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322910/ https://www.ncbi.nlm.nih.gov/pubmed/37407571 http://dx.doi.org/10.1038/s41467-023-39381-w |
Ejemplares similares
-
Generalization in quantum machine learning from few training data
por: Caro, Matthias C., et al.
Publicado: (2022) -
Variational consistent histories as a hybrid algorithm for quantum foundations
por: Arrasmith, Andrew, et al.
Publicado: (2019) -
Cost function dependent barren plateaus in shallow parametrized quantum circuits
por: Cerezo, M., et al.
Publicado: (2021) -
Noise-induced barren plateaus in variational quantum algorithms
por: Wang, Samson, et al.
Publicado: (2021) -
Quantum Simulation of Tunneling in Small Systems
por: Sornborger, Andrew T.
Publicado: (2012)