Cargando…
Unsupervised blind image quality assessment via joint spatial and transform features
A novel unsupervised blind image quality assessment (BIQA) method, which requires no mean opinion scores for model training is presented in this paper. The method employs joint spatial and transform features as quality degradation metrics, specifically, phase congruency, gradient magnitude (GM), and...
Autores principales: | Yang, Chao, He, Qinglin, An, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322922/ https://www.ncbi.nlm.nih.gov/pubmed/37407688 http://dx.doi.org/10.1038/s41598-023-38099-5 |
Ejemplares similares
-
Learning spatially variant degradation for unsupervised blind photoacoustic tomography image restoration
por: Tang, Kaiyi, et al.
Publicado: (2023) -
Feature-aware unsupervised lesion segmentation for brain tumor images using fast data density functional transform
por: Huang, Shin-Jhe, et al.
Publicado: (2023) -
Cross-Domain Feature Similarity Guided Blind Image Quality Assessment
por: Feng, Chenxi, et al.
Publicado: (2022) -
Unsupervised content-preserving transformation for optical microscopy
por: Li, Xinyang, et al.
Publicado: (2021) -
Unsupervised brain imaging 3D anomaly detection and segmentation with transformers
por: Pinaya, Walter H.L., et al.
Publicado: (2022)