Cargando…
An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT
Lung cancer screening using computed tomography (CT) has increased the detection rate of small pulmonary nodules and early-stage lung adenocarcinoma. It would be clinically meaningful to accurate assessment of the nodule histology by CT scans with advanced deep learning algorithms. However, recent s...
Autores principales: | Zhou, Jing, Hu, Bin, Feng, Wei, Zhang, Zhang, Fu, Xiaotong, Shao, Handie, Wang, Hansheng, Jin, Longyu, Ai, Siyuan, Ji, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322969/ https://www.ncbi.nlm.nih.gov/pubmed/37407729 http://dx.doi.org/10.1038/s41746-023-00866-z |
Ejemplares similares
-
Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis
por: Bennink, Edwin, et al.
Publicado: (2015) -
Thin-slice computed tomography enables to classify pulmonary subsolid nodules into pre-invasive lesion/minimally invasive adenocarcinoma and invasive adenocarcinoma: a retrospective study
por: Li, Min, et al.
Publicado: (2023) -
Long-Term Follow-Up Study of COVID-19: Evaluation on Thin-Slice CT
por: Guan, Chun-Shuang, et al.
Publicado: (2022) -
Radiological prediction of tumor invasiveness of lung adenocarcinoma on thin-section CT
por: Yanagawa, Masahiro, et al.
Publicado: (2017) -
Peritumoral radiomics features on preoperative thin-slice CT images can predict the spread through air spaces of lung adenocarcinoma
por: Takehana, Keiichi, et al.
Publicado: (2022)