Cargando…
A comparative investigation of machine learning algorithms for predicting safety signs comprehension based on socio-demographic factors and cognitive sign features
This study examines whether the socio-demographic factors and cognitive sign features can be used for envisaging safety signs comprehensibility using predictive machine learning (ML) techniques. This study will determine the role of different machine learning components such as feature selection and...
Autores principales: | Rostamzadeh, Sajjad, Abouhossein, Alireza, Saremi, Mahnaz, Taheri, Fereshteh, Ebrahimian, Mobin, Vosoughi, Shahram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322991/ https://www.ncbi.nlm.nih.gov/pubmed/37407611 http://dx.doi.org/10.1038/s41598-023-38065-1 |
Ejemplares similares
-
Normative data for handgrip strength in Iranian healthy children and adolescents aged 7–18 years: comparison with international norms
por: Rostamzadeh, Sajjad, et al.
Publicado: (2021) -
Analysis of hand-forearm anthropometric components in assessing handgrip and pinch strengths of school-aged children and adolescents: a partial least squares (PLS) approach
por: Rostamzadeh, Sajjad, et al.
Publicado: (2021) -
Vitreous Hemorrhage as the Presenting Sign of Idiopathic Intracranial Hypertension
por: Vosoughi, Amir R., et al.
Publicado: (2022) -
Machines and Signs: A History of the Drawing of Machines
por: Rovida, Edoardo
Publicado: (2013) -
DC-SIGN and L-SIGN: the SIGNs for infection
por: Khoo, Ui-Soon, et al.
Publicado: (2008)