Cargando…

Protocol for quantitative characterization of human retinotopic maps using quasiconformal mapping

High-field functional magnetic resonance imaging generates in vivo retinotopic maps, but quantifying them remains challenging. Here, we present a pipeline based on conformal geometry and Teichmüller theory for the quantitative characterization of human retinotopic maps. We describe steps for cortica...

Descripción completa

Detalles Bibliográficos
Autores principales: Ta, Duyan, Jalili Mallak, Negar, Lu, Zhong-Lin, Wang, Yalin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323127/
https://www.ncbi.nlm.nih.gov/pubmed/37083318
http://dx.doi.org/10.1016/j.xpro.2023.102246
_version_ 1785068901679235072
author Ta, Duyan
Jalili Mallak, Negar
Lu, Zhong-Lin
Wang, Yalin
author_facet Ta, Duyan
Jalili Mallak, Negar
Lu, Zhong-Lin
Wang, Yalin
author_sort Ta, Duyan
collection PubMed
description High-field functional magnetic resonance imaging generates in vivo retinotopic maps, but quantifying them remains challenging. Here, we present a pipeline based on conformal geometry and Teichmüller theory for the quantitative characterization of human retinotopic maps. We describe steps for cortical surface parameterization and surface-spline-based smoothing. We then detail Beltrami coefficient-based mapping, which provides a quantitative and re-constructible description of the retinotopic maps. This framework has been successfully used to analyze the Human Connectome Project’s V1 retinotopic maps. For complete details on the use and execution of this protocol, please refer to Ta et al. (2022).(1)
format Online
Article
Text
id pubmed-10323127
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103231272023-07-07 Protocol for quantitative characterization of human retinotopic maps using quasiconformal mapping Ta, Duyan Jalili Mallak, Negar Lu, Zhong-Lin Wang, Yalin STAR Protoc Protocol High-field functional magnetic resonance imaging generates in vivo retinotopic maps, but quantifying them remains challenging. Here, we present a pipeline based on conformal geometry and Teichmüller theory for the quantitative characterization of human retinotopic maps. We describe steps for cortical surface parameterization and surface-spline-based smoothing. We then detail Beltrami coefficient-based mapping, which provides a quantitative and re-constructible description of the retinotopic maps. This framework has been successfully used to analyze the Human Connectome Project’s V1 retinotopic maps. For complete details on the use and execution of this protocol, please refer to Ta et al. (2022).(1) Elsevier 2023-04-21 /pmc/articles/PMC10323127/ /pubmed/37083318 http://dx.doi.org/10.1016/j.xpro.2023.102246 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Ta, Duyan
Jalili Mallak, Negar
Lu, Zhong-Lin
Wang, Yalin
Protocol for quantitative characterization of human retinotopic maps using quasiconformal mapping
title Protocol for quantitative characterization of human retinotopic maps using quasiconformal mapping
title_full Protocol for quantitative characterization of human retinotopic maps using quasiconformal mapping
title_fullStr Protocol for quantitative characterization of human retinotopic maps using quasiconformal mapping
title_full_unstemmed Protocol for quantitative characterization of human retinotopic maps using quasiconformal mapping
title_short Protocol for quantitative characterization of human retinotopic maps using quasiconformal mapping
title_sort protocol for quantitative characterization of human retinotopic maps using quasiconformal mapping
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323127/
https://www.ncbi.nlm.nih.gov/pubmed/37083318
http://dx.doi.org/10.1016/j.xpro.2023.102246
work_keys_str_mv AT taduyan protocolforquantitativecharacterizationofhumanretinotopicmapsusingquasiconformalmapping
AT jalilimallaknegar protocolforquantitativecharacterizationofhumanretinotopicmapsusingquasiconformalmapping
AT luzhonglin protocolforquantitativecharacterizationofhumanretinotopicmapsusingquasiconformalmapping
AT wangyalin protocolforquantitativecharacterizationofhumanretinotopicmapsusingquasiconformalmapping