Cargando…
Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro
Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323144/ https://www.ncbi.nlm.nih.gov/pubmed/37426813 http://dx.doi.org/10.3389/fphar.2023.1193282 |
_version_ | 1785068905730932736 |
---|---|
author | Ruatta, Santiago M. Prada Gori, Denis N. Fló Díaz, Martín Lorenzelli, Franca Perelmuter, Karen Alberca, Lucas N. Bellera, Carolina L. Medeiros, Andrea López, Gloria V. Ingold, Mariana Porcal, Williams Dibello, Estefanía Ihnatenko, Irina Kunick, Conrad Incerti, Marcelo Luzardo, Martín Colobbio, Maximiliano Ramos, Juan Carlos Manta, Eduardo Minini, Lucía Lavaggi, María Laura Hernández, Paola Šarlauskas, Jonas Huerta García, César Sebastian Castillo, Rafael Hernández-Campos, Alicia Ribaudo, Giovanni Zagotto, Giuseppe Carlucci, Renzo Medrán, Noelia S. Labadie, Guillermo R. Martinez-Amezaga, Maitena Delpiccolo, Carina M. L. Mata, Ernesto G. Scarone, Laura Posada, Laura Serra, Gloria Calogeropoulou, Theodora Prousis, Kyriakos Detsi, Anastasia Cabrera, Mauricio Alvarez, Guzmán Aicardo, Adrián Araújo, Verena Chavarría, Cecilia Mašič, Lucija Peterlin Gantner, Melisa E. Llanos, Manuel A. Rodríguez, Santiago Gavernet, Luciana Park, Soonju Heo, Jinyeong Lee, Honggun Paul Park, Kyu-Ho Bollati-Fogolín, Mariela Pritsch, Otto Shum, David Talevi, Alan Comini, Marcelo A. |
author_facet | Ruatta, Santiago M. Prada Gori, Denis N. Fló Díaz, Martín Lorenzelli, Franca Perelmuter, Karen Alberca, Lucas N. Bellera, Carolina L. Medeiros, Andrea López, Gloria V. Ingold, Mariana Porcal, Williams Dibello, Estefanía Ihnatenko, Irina Kunick, Conrad Incerti, Marcelo Luzardo, Martín Colobbio, Maximiliano Ramos, Juan Carlos Manta, Eduardo Minini, Lucía Lavaggi, María Laura Hernández, Paola Šarlauskas, Jonas Huerta García, César Sebastian Castillo, Rafael Hernández-Campos, Alicia Ribaudo, Giovanni Zagotto, Giuseppe Carlucci, Renzo Medrán, Noelia S. Labadie, Guillermo R. Martinez-Amezaga, Maitena Delpiccolo, Carina M. L. Mata, Ernesto G. Scarone, Laura Posada, Laura Serra, Gloria Calogeropoulou, Theodora Prousis, Kyriakos Detsi, Anastasia Cabrera, Mauricio Alvarez, Guzmán Aicardo, Adrián Araújo, Verena Chavarría, Cecilia Mašič, Lucija Peterlin Gantner, Melisa E. Llanos, Manuel A. Rodríguez, Santiago Gavernet, Luciana Park, Soonju Heo, Jinyeong Lee, Honggun Paul Park, Kyu-Ho Bollati-Fogolín, Mariela Pritsch, Otto Shum, David Talevi, Alan Comini, Marcelo A. |
author_sort | Ruatta, Santiago M. |
collection | PubMed |
description | Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy –performed in a large and diverse chemolibrary– complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC(50) ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC(50) = 0.12–20 μM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC(50) 7–45 μM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known “garbage in, garbage out” machine learning principle. |
format | Online Article Text |
id | pubmed-10323144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103231442023-07-07 Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro Ruatta, Santiago M. Prada Gori, Denis N. Fló Díaz, Martín Lorenzelli, Franca Perelmuter, Karen Alberca, Lucas N. Bellera, Carolina L. Medeiros, Andrea López, Gloria V. Ingold, Mariana Porcal, Williams Dibello, Estefanía Ihnatenko, Irina Kunick, Conrad Incerti, Marcelo Luzardo, Martín Colobbio, Maximiliano Ramos, Juan Carlos Manta, Eduardo Minini, Lucía Lavaggi, María Laura Hernández, Paola Šarlauskas, Jonas Huerta García, César Sebastian Castillo, Rafael Hernández-Campos, Alicia Ribaudo, Giovanni Zagotto, Giuseppe Carlucci, Renzo Medrán, Noelia S. Labadie, Guillermo R. Martinez-Amezaga, Maitena Delpiccolo, Carina M. L. Mata, Ernesto G. Scarone, Laura Posada, Laura Serra, Gloria Calogeropoulou, Theodora Prousis, Kyriakos Detsi, Anastasia Cabrera, Mauricio Alvarez, Guzmán Aicardo, Adrián Araújo, Verena Chavarría, Cecilia Mašič, Lucija Peterlin Gantner, Melisa E. Llanos, Manuel A. Rodríguez, Santiago Gavernet, Luciana Park, Soonju Heo, Jinyeong Lee, Honggun Paul Park, Kyu-Ho Bollati-Fogolín, Mariela Pritsch, Otto Shum, David Talevi, Alan Comini, Marcelo A. Front Pharmacol Pharmacology Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy –performed in a large and diverse chemolibrary– complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC(50) ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC(50) = 0.12–20 μM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC(50) 7–45 μM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known “garbage in, garbage out” machine learning principle. Frontiers Media S.A. 2023-06-22 /pmc/articles/PMC10323144/ /pubmed/37426813 http://dx.doi.org/10.3389/fphar.2023.1193282 Text en Copyright © 2023 Ruatta, Prada Gori, Fló Díaz, Lorenzelli, Perelmuter, Alberca, Bellera, Medeiros, López, Ingold, Porcal, Dibello, Ihnatenko, Kunick, Incerti, Luzardo, Colobbio, Ramos, Manta, Minini, Lavaggi, Hernández, Šarlauskas, Huerta García, Castillo, Hernández-Campos, Ribaudo, Zagotto, Carlucci, Medrán, Labadie, Martinez-Amezaga, Delpiccolo, Mata, Scarone, Posada, Serra, Calogeropoulou, Prousis, Detsi, Cabrera, Alvarez, Aicardo, Araújo, Chavarría, Mašič, Gantner, Llanos, Rodríguez, Gavernet, Park, Heo, Lee, Paul Park, Bollati-Fogolín, Pritsch, Shum, Talevi and Comini. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Ruatta, Santiago M. Prada Gori, Denis N. Fló Díaz, Martín Lorenzelli, Franca Perelmuter, Karen Alberca, Lucas N. Bellera, Carolina L. Medeiros, Andrea López, Gloria V. Ingold, Mariana Porcal, Williams Dibello, Estefanía Ihnatenko, Irina Kunick, Conrad Incerti, Marcelo Luzardo, Martín Colobbio, Maximiliano Ramos, Juan Carlos Manta, Eduardo Minini, Lucía Lavaggi, María Laura Hernández, Paola Šarlauskas, Jonas Huerta García, César Sebastian Castillo, Rafael Hernández-Campos, Alicia Ribaudo, Giovanni Zagotto, Giuseppe Carlucci, Renzo Medrán, Noelia S. Labadie, Guillermo R. Martinez-Amezaga, Maitena Delpiccolo, Carina M. L. Mata, Ernesto G. Scarone, Laura Posada, Laura Serra, Gloria Calogeropoulou, Theodora Prousis, Kyriakos Detsi, Anastasia Cabrera, Mauricio Alvarez, Guzmán Aicardo, Adrián Araújo, Verena Chavarría, Cecilia Mašič, Lucija Peterlin Gantner, Melisa E. Llanos, Manuel A. Rodríguez, Santiago Gavernet, Luciana Park, Soonju Heo, Jinyeong Lee, Honggun Paul Park, Kyu-Ho Bollati-Fogolín, Mariela Pritsch, Otto Shum, David Talevi, Alan Comini, Marcelo A. Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro |
title | Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro |
title_full | Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro |
title_fullStr | Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro |
title_full_unstemmed | Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro |
title_short | Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro |
title_sort | garbage in, garbage out: how reliable training data improved a virtual screening approach against sars-cov-2 mpro |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323144/ https://www.ncbi.nlm.nih.gov/pubmed/37426813 http://dx.doi.org/10.3389/fphar.2023.1193282 |
work_keys_str_mv | AT ruattasantiagom garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT pradagoridenisn garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT flodiazmartin garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT lorenzellifranca garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT perelmuterkaren garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT albercalucasn garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT belleracarolinal garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT medeirosandrea garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT lopezgloriav garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT ingoldmariana garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT porcalwilliams garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT dibelloestefania garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT ihnatenkoirina garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT kunickconrad garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT incertimarcelo garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT luzardomartin garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT colobbiomaximiliano garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT ramosjuancarlos garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT mantaeduardo garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT mininilucia garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT lavaggimarialaura garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT hernandezpaola garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT sarlauskasjonas garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT huertagarciacesarsebastian garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT castillorafael garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT hernandezcamposalicia garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT ribaudogiovanni garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT zagottogiuseppe garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT carluccirenzo garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT medrannoelias garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT labadieguillermor garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT martinezamezagamaitena garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT delpiccolocarinaml garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT mataernestog garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT scaronelaura garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT posadalaura garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT serragloria garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT calogeropouloutheodora garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT prousiskyriakos garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT detsianastasia garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT cabreramauricio garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT alvarezguzman garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT aicardoadrian garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT araujoverena garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT chavarriacecilia garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT masiclucijapeterlin garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT gantnermelisae garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT llanosmanuela garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT rodriguezsantiago garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT gavernetluciana garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT parksoonju garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT heojinyeong garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT leehonggun garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT paulparkkyuho garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT bollatifogolinmariela garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT pritschotto garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT shumdavid garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT talevialan garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro AT cominimarceloa garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro |