Cargando…

Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro

Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruatta, Santiago M., Prada Gori, Denis N., Fló Díaz, Martín, Lorenzelli, Franca, Perelmuter, Karen, Alberca, Lucas N., Bellera, Carolina L., Medeiros, Andrea, López, Gloria V., Ingold, Mariana, Porcal, Williams, Dibello, Estefanía, Ihnatenko, Irina, Kunick, Conrad, Incerti, Marcelo, Luzardo, Martín, Colobbio, Maximiliano, Ramos, Juan Carlos, Manta, Eduardo, Minini, Lucía, Lavaggi, María Laura, Hernández, Paola, Šarlauskas, Jonas, Huerta García, César Sebastian, Castillo, Rafael, Hernández-Campos, Alicia, Ribaudo, Giovanni, Zagotto, Giuseppe, Carlucci, Renzo, Medrán, Noelia S., Labadie, Guillermo R., Martinez-Amezaga, Maitena, Delpiccolo, Carina M. L., Mata, Ernesto G., Scarone, Laura, Posada, Laura, Serra, Gloria, Calogeropoulou, Theodora, Prousis, Kyriakos, Detsi, Anastasia, Cabrera, Mauricio, Alvarez, Guzmán, Aicardo, Adrián, Araújo, Verena, Chavarría, Cecilia, Mašič, Lucija Peterlin, Gantner, Melisa E., Llanos, Manuel A., Rodríguez, Santiago, Gavernet, Luciana, Park, Soonju, Heo, Jinyeong, Lee, Honggun, Paul Park, Kyu-Ho, Bollati-Fogolín, Mariela, Pritsch, Otto, Shum, David, Talevi, Alan, Comini, Marcelo A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323144/
https://www.ncbi.nlm.nih.gov/pubmed/37426813
http://dx.doi.org/10.3389/fphar.2023.1193282
_version_ 1785068905730932736
author Ruatta, Santiago M.
Prada Gori, Denis N.
Fló Díaz, Martín
Lorenzelli, Franca
Perelmuter, Karen
Alberca, Lucas N.
Bellera, Carolina L.
Medeiros, Andrea
López, Gloria V.
Ingold, Mariana
Porcal, Williams
Dibello, Estefanía
Ihnatenko, Irina
Kunick, Conrad
Incerti, Marcelo
Luzardo, Martín
Colobbio, Maximiliano
Ramos, Juan Carlos
Manta, Eduardo
Minini, Lucía
Lavaggi, María Laura
Hernández, Paola
Šarlauskas, Jonas
Huerta García, César Sebastian
Castillo, Rafael
Hernández-Campos, Alicia
Ribaudo, Giovanni
Zagotto, Giuseppe
Carlucci, Renzo
Medrán, Noelia S.
Labadie, Guillermo R.
Martinez-Amezaga, Maitena
Delpiccolo, Carina M. L.
Mata, Ernesto G.
Scarone, Laura
Posada, Laura
Serra, Gloria
Calogeropoulou, Theodora
Prousis, Kyriakos
Detsi, Anastasia
Cabrera, Mauricio
Alvarez, Guzmán
Aicardo, Adrián
Araújo, Verena
Chavarría, Cecilia
Mašič, Lucija Peterlin
Gantner, Melisa E.
Llanos, Manuel A.
Rodríguez, Santiago
Gavernet, Luciana
Park, Soonju
Heo, Jinyeong
Lee, Honggun
Paul Park, Kyu-Ho
Bollati-Fogolín, Mariela
Pritsch, Otto
Shum, David
Talevi, Alan
Comini, Marcelo A.
author_facet Ruatta, Santiago M.
Prada Gori, Denis N.
Fló Díaz, Martín
Lorenzelli, Franca
Perelmuter, Karen
Alberca, Lucas N.
Bellera, Carolina L.
Medeiros, Andrea
López, Gloria V.
Ingold, Mariana
Porcal, Williams
Dibello, Estefanía
Ihnatenko, Irina
Kunick, Conrad
Incerti, Marcelo
Luzardo, Martín
Colobbio, Maximiliano
Ramos, Juan Carlos
Manta, Eduardo
Minini, Lucía
Lavaggi, María Laura
Hernández, Paola
Šarlauskas, Jonas
Huerta García, César Sebastian
Castillo, Rafael
Hernández-Campos, Alicia
Ribaudo, Giovanni
Zagotto, Giuseppe
Carlucci, Renzo
Medrán, Noelia S.
Labadie, Guillermo R.
Martinez-Amezaga, Maitena
Delpiccolo, Carina M. L.
Mata, Ernesto G.
Scarone, Laura
Posada, Laura
Serra, Gloria
Calogeropoulou, Theodora
Prousis, Kyriakos
Detsi, Anastasia
Cabrera, Mauricio
Alvarez, Guzmán
Aicardo, Adrián
Araújo, Verena
Chavarría, Cecilia
Mašič, Lucija Peterlin
Gantner, Melisa E.
Llanos, Manuel A.
Rodríguez, Santiago
Gavernet, Luciana
Park, Soonju
Heo, Jinyeong
Lee, Honggun
Paul Park, Kyu-Ho
Bollati-Fogolín, Mariela
Pritsch, Otto
Shum, David
Talevi, Alan
Comini, Marcelo A.
author_sort Ruatta, Santiago M.
collection PubMed
description Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy –performed in a large and diverse chemolibrary– complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC(50) ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC(50) = 0.12–20 μM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC(50) 7–45 μM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known “garbage in, garbage out” machine learning principle.
format Online
Article
Text
id pubmed-10323144
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-103231442023-07-07 Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro Ruatta, Santiago M. Prada Gori, Denis N. Fló Díaz, Martín Lorenzelli, Franca Perelmuter, Karen Alberca, Lucas N. Bellera, Carolina L. Medeiros, Andrea López, Gloria V. Ingold, Mariana Porcal, Williams Dibello, Estefanía Ihnatenko, Irina Kunick, Conrad Incerti, Marcelo Luzardo, Martín Colobbio, Maximiliano Ramos, Juan Carlos Manta, Eduardo Minini, Lucía Lavaggi, María Laura Hernández, Paola Šarlauskas, Jonas Huerta García, César Sebastian Castillo, Rafael Hernández-Campos, Alicia Ribaudo, Giovanni Zagotto, Giuseppe Carlucci, Renzo Medrán, Noelia S. Labadie, Guillermo R. Martinez-Amezaga, Maitena Delpiccolo, Carina M. L. Mata, Ernesto G. Scarone, Laura Posada, Laura Serra, Gloria Calogeropoulou, Theodora Prousis, Kyriakos Detsi, Anastasia Cabrera, Mauricio Alvarez, Guzmán Aicardo, Adrián Araújo, Verena Chavarría, Cecilia Mašič, Lucija Peterlin Gantner, Melisa E. Llanos, Manuel A. Rodríguez, Santiago Gavernet, Luciana Park, Soonju Heo, Jinyeong Lee, Honggun Paul Park, Kyu-Ho Bollati-Fogolín, Mariela Pritsch, Otto Shum, David Talevi, Alan Comini, Marcelo A. Front Pharmacol Pharmacology Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy –performed in a large and diverse chemolibrary– complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC(50) ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC(50) = 0.12–20 μM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC(50) 7–45 μM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known “garbage in, garbage out” machine learning principle. Frontiers Media S.A. 2023-06-22 /pmc/articles/PMC10323144/ /pubmed/37426813 http://dx.doi.org/10.3389/fphar.2023.1193282 Text en Copyright © 2023 Ruatta, Prada Gori, Fló Díaz, Lorenzelli, Perelmuter, Alberca, Bellera, Medeiros, López, Ingold, Porcal, Dibello, Ihnatenko, Kunick, Incerti, Luzardo, Colobbio, Ramos, Manta, Minini, Lavaggi, Hernández, Šarlauskas, Huerta García, Castillo, Hernández-Campos, Ribaudo, Zagotto, Carlucci, Medrán, Labadie, Martinez-Amezaga, Delpiccolo, Mata, Scarone, Posada, Serra, Calogeropoulou, Prousis, Detsi, Cabrera, Alvarez, Aicardo, Araújo, Chavarría, Mašič, Gantner, Llanos, Rodríguez, Gavernet, Park, Heo, Lee, Paul Park, Bollati-Fogolín, Pritsch, Shum, Talevi and Comini. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Pharmacology
Ruatta, Santiago M.
Prada Gori, Denis N.
Fló Díaz, Martín
Lorenzelli, Franca
Perelmuter, Karen
Alberca, Lucas N.
Bellera, Carolina L.
Medeiros, Andrea
López, Gloria V.
Ingold, Mariana
Porcal, Williams
Dibello, Estefanía
Ihnatenko, Irina
Kunick, Conrad
Incerti, Marcelo
Luzardo, Martín
Colobbio, Maximiliano
Ramos, Juan Carlos
Manta, Eduardo
Minini, Lucía
Lavaggi, María Laura
Hernández, Paola
Šarlauskas, Jonas
Huerta García, César Sebastian
Castillo, Rafael
Hernández-Campos, Alicia
Ribaudo, Giovanni
Zagotto, Giuseppe
Carlucci, Renzo
Medrán, Noelia S.
Labadie, Guillermo R.
Martinez-Amezaga, Maitena
Delpiccolo, Carina M. L.
Mata, Ernesto G.
Scarone, Laura
Posada, Laura
Serra, Gloria
Calogeropoulou, Theodora
Prousis, Kyriakos
Detsi, Anastasia
Cabrera, Mauricio
Alvarez, Guzmán
Aicardo, Adrián
Araújo, Verena
Chavarría, Cecilia
Mašič, Lucija Peterlin
Gantner, Melisa E.
Llanos, Manuel A.
Rodríguez, Santiago
Gavernet, Luciana
Park, Soonju
Heo, Jinyeong
Lee, Honggun
Paul Park, Kyu-Ho
Bollati-Fogolín, Mariela
Pritsch, Otto
Shum, David
Talevi, Alan
Comini, Marcelo A.
Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro
title Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro
title_full Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro
title_fullStr Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro
title_full_unstemmed Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro
title_short Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro
title_sort garbage in, garbage out: how reliable training data improved a virtual screening approach against sars-cov-2 mpro
topic Pharmacology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323144/
https://www.ncbi.nlm.nih.gov/pubmed/37426813
http://dx.doi.org/10.3389/fphar.2023.1193282
work_keys_str_mv AT ruattasantiagom garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT pradagoridenisn garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT flodiazmartin garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT lorenzellifranca garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT perelmuterkaren garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT albercalucasn garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT belleracarolinal garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT medeirosandrea garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT lopezgloriav garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT ingoldmariana garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT porcalwilliams garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT dibelloestefania garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT ihnatenkoirina garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT kunickconrad garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT incertimarcelo garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT luzardomartin garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT colobbiomaximiliano garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT ramosjuancarlos garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT mantaeduardo garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT mininilucia garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT lavaggimarialaura garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT hernandezpaola garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT sarlauskasjonas garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT huertagarciacesarsebastian garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT castillorafael garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT hernandezcamposalicia garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT ribaudogiovanni garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT zagottogiuseppe garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT carluccirenzo garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT medrannoelias garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT labadieguillermor garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT martinezamezagamaitena garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT delpiccolocarinaml garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT mataernestog garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT scaronelaura garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT posadalaura garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT serragloria garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT calogeropouloutheodora garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT prousiskyriakos garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT detsianastasia garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT cabreramauricio garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT alvarezguzman garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT aicardoadrian garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT araujoverena garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT chavarriacecilia garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT masiclucijapeterlin garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT gantnermelisae garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT llanosmanuela garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT rodriguezsantiago garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT gavernetluciana garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT parksoonju garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT heojinyeong garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT leehonggun garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT paulparkkyuho garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT bollatifogolinmariela garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT pritschotto garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT shumdavid garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT talevialan garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro
AT cominimarceloa garbageingarbageouthowreliabletrainingdataimprovedavirtualscreeningapproachagainstsarscov2mpro