Cargando…

Estimation of white matter hyperintensities with synthetic MRI myelin volume fraction in patients with multiple sclerosis and non-multiple-sclerosis white matter hyperintensities: A pilot study among the Indian population

AIM: Synthetic MRI (SyMRI) works on the MDME sequence, which acquires the relaxation properties of the brain and helps to measure the accurate tissue properties in 6 minutes. The aim of this study was to evaluate the synthetic MRI (SyMRI)-generated myelin (MyC) to white matter (WM) ratio, the WM fra...

Descripción completa

Detalles Bibliográficos
Autores principales: Nasser, Nisha Syed, Sharma, Krish, Mehta, Parv Mahendra, Mahajan, Vidur, Mahajan, Harsh, Venugopal, Vasantha Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIMS Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323258/
https://www.ncbi.nlm.nih.gov/pubmed/37426773
http://dx.doi.org/10.3934/Neuroscience.2023011
Descripción
Sumario:AIM: Synthetic MRI (SyMRI) works on the MDME sequence, which acquires the relaxation properties of the brain and helps to measure the accurate tissue properties in 6 minutes. The aim of this study was to evaluate the synthetic MRI (SyMRI)-generated myelin (MyC) to white matter (WM) ratio, the WM fraction (WMF), MyC partial maps performing normative brain volumetry to investigate MyC loss in multiple sclerosis (MS) patients with white-matter hyperintensites (WMHs) and non-MS patients with WMHs in a clinical setting. MATERIALS AND METHODS: Synthetic MRI images were acquired from 15 patients with MS, and from 15 non-MS patients on a 3T MRI scanner (Discovery MR750w; GE Healthcare; Milwaukee, USA) using MAGiC, a customized version of SyntheticMR's SyMRI® IMAGE software marketed by GE Healthcare under a license agreement. Fast multi-delay multi-echo acquisition was performed with a 2D axial pulse sequence with different combinations of echo time (TEs) and saturation delay times. The total image acquisition time was 6 minutes. SyMRI image analysis was done using SyMRI software (SyMRI Version: 11.3.6; Synthetic MR, Linköping, Sweden). SyMRI data were used to generate the MyC partial maps and WMFs to quantify the signal intensities of test group and control group, andcontrol group , and their mean values were recorded. All patients also underwent conventional diffusion-weighted imaging, i.e., T1w and T2w imaging. RESULTS: The results showed that the WMF was significantly lower in the test group than in the control group (38.8% vs 33.2%, p < 0.001). The Mann-Whitney U nonparametric t-test revealed a significant difference in the mean myelin volume between the test group and the control group (158.66 ± 32.31 vs. 138.29 ± 29.28, p = 0.044). Also, there were no significant differences in the gray matter fraction and intracranial volume between the test group and the control group. CONCLUSIONS: We observed MyC loss in test group using quantitative SyMRI. Thus, myelin loss in MS patients can be quantitatively evaluated using SyMRI.