Cargando…

Generation of Long‐Lived Excitons in Room‐Temperature Phosphorescence 2D Organic and Inorganic Hybrid Perovskites for Ultrafast and Low Power‐Consumption Nonvolatile Photomemory

Room‐temperature phosphorescence (RTP) two‐dimensional (2D) organic‐inorganic hybrid perovskites (OIHPs) that possess superior stability and efficient triplet energy transfer between inorganic parts and organic cations have been seen as promising materials in optoelectronic devices. However, the dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jian‐Cheng, Lu, Yu‐Dao, Chen, Jung‐Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323654/
https://www.ncbi.nlm.nih.gov/pubmed/37075740
http://dx.doi.org/10.1002/advs.202301028
Descripción
Sumario:Room‐temperature phosphorescence (RTP) two‐dimensional (2D) organic‐inorganic hybrid perovskites (OIHPs) that possess superior stability and efficient triplet energy transfer between inorganic parts and organic cations have been seen as promising materials in optoelectronic devices. However, the development of RTP 2D OIHP‐based photomemory has not been explored yet. In this work, the spatially addressable RTP 2D OIHPs‐based nonvolatile flash photomemory is first investigated to explore the function of triplet excitons in elevating the performance of photomemory. Thanks to the triplet excitons generated in RTP 2D OIHP, extremely low photo‐programming time of 0.7 ms, multilevel behavior of minimum 7 bits (128 levels), remarkable photoresponsivity of 19.10 AW(−1) and significantly low power consumption of 6.79 × 10(−8) J per bit can be achieved. The current study provides a new prospective in understanding triplet excitons function in nonvolatile photomemory.