Cargando…
Exploring the Benefits of Ablation Grid Adaptation in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry Mapping through Geometrical Modeling
[Image: see text] This study aims to investigate the potential benefits of adapting the ablating grid in two-dimensional (2D) and three-dimensional (3D) laser ablation inductively coupled plasma mass spectrometry in a single pulse mapping mode. The goals include enhancing the accuracy of surface sam...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323869/ https://www.ncbi.nlm.nih.gov/pubmed/37262129 http://dx.doi.org/10.1021/acs.analchem.3c00774 |
_version_ | 1785069031927054336 |
---|---|
author | van Elteren, Johannes T. Metarapi, Dino Mervič, Kristina Šala, Martin |
author_facet | van Elteren, Johannes T. Metarapi, Dino Mervič, Kristina Šala, Martin |
author_sort | van Elteren, Johannes T. |
collection | PubMed |
description | [Image: see text] This study aims to investigate the potential benefits of adapting the ablating grid in two-dimensional (2D) and three-dimensional (3D) laser ablation inductively coupled plasma mass spectrometry in a single pulse mapping mode. The goals include enhancing the accuracy of surface sampling of element distributions, improving the control of depth-related sampling, smoothing the post-ablation surface for layer-by-layer sampling, and increasing the image quality. To emulate the capabilities of currently unavailable laser ablation stages, a computational approach using geometrical modeling was employed to compound square or round experimentally obtained 3D crater profiles on variable orthogonal or hexagonal ablation grids. These grids were optimized by minimizing surface roughness as a function of average ablation depth, followed by simulating the post-ablation surface and related image quality. An online application (https://laicpms-apps.ki.si/webapps/home/) is available for users to virtually experiment with contracting/expanding orthogonal and hexagonal ablation grids for generic 3D super-Gaussian laser crater profiles, allowing for exploration of the resulting post-ablation surface layer roughness and depth. |
format | Online Article Text |
id | pubmed-10323869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-103238692023-07-07 Exploring the Benefits of Ablation Grid Adaptation in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry Mapping through Geometrical Modeling van Elteren, Johannes T. Metarapi, Dino Mervič, Kristina Šala, Martin Anal Chem [Image: see text] This study aims to investigate the potential benefits of adapting the ablating grid in two-dimensional (2D) and three-dimensional (3D) laser ablation inductively coupled plasma mass spectrometry in a single pulse mapping mode. The goals include enhancing the accuracy of surface sampling of element distributions, improving the control of depth-related sampling, smoothing the post-ablation surface for layer-by-layer sampling, and increasing the image quality. To emulate the capabilities of currently unavailable laser ablation stages, a computational approach using geometrical modeling was employed to compound square or round experimentally obtained 3D crater profiles on variable orthogonal or hexagonal ablation grids. These grids were optimized by minimizing surface roughness as a function of average ablation depth, followed by simulating the post-ablation surface and related image quality. An online application (https://laicpms-apps.ki.si/webapps/home/) is available for users to virtually experiment with contracting/expanding orthogonal and hexagonal ablation grids for generic 3D super-Gaussian laser crater profiles, allowing for exploration of the resulting post-ablation surface layer roughness and depth. American Chemical Society 2023-06-01 /pmc/articles/PMC10323869/ /pubmed/37262129 http://dx.doi.org/10.1021/acs.analchem.3c00774 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | van Elteren, Johannes T. Metarapi, Dino Mervič, Kristina Šala, Martin Exploring the Benefits of Ablation Grid Adaptation in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry Mapping through Geometrical Modeling |
title | Exploring the Benefits of Ablation Grid Adaptation
in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry
Mapping through Geometrical Modeling |
title_full | Exploring the Benefits of Ablation Grid Adaptation
in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry
Mapping through Geometrical Modeling |
title_fullStr | Exploring the Benefits of Ablation Grid Adaptation
in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry
Mapping through Geometrical Modeling |
title_full_unstemmed | Exploring the Benefits of Ablation Grid Adaptation
in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry
Mapping through Geometrical Modeling |
title_short | Exploring the Benefits of Ablation Grid Adaptation
in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry
Mapping through Geometrical Modeling |
title_sort | exploring the benefits of ablation grid adaptation
in 2d/3d laser ablation inductively coupled plasma mass spectrometry
mapping through geometrical modeling |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323869/ https://www.ncbi.nlm.nih.gov/pubmed/37262129 http://dx.doi.org/10.1021/acs.analchem.3c00774 |
work_keys_str_mv | AT vanelterenjohannest exploringthebenefitsofablationgridadaptationin2d3dlaserablationinductivelycoupledplasmamassspectrometrymappingthroughgeometricalmodeling AT metarapidino exploringthebenefitsofablationgridadaptationin2d3dlaserablationinductivelycoupledplasmamassspectrometrymappingthroughgeometricalmodeling AT mervickristina exploringthebenefitsofablationgridadaptationin2d3dlaserablationinductivelycoupledplasmamassspectrometrymappingthroughgeometricalmodeling AT salamartin exploringthebenefitsofablationgridadaptationin2d3dlaserablationinductivelycoupledplasmamassspectrometrymappingthroughgeometricalmodeling |