Cargando…
Bidirectional Long Short-term Neural Network Based on the Attention Mechanism of the Residual Neural Network (ResNet–BiLSTM–Attention) Predicts Porosity through Well Logging Parameters
[Image: see text] Porosity is an integral part of reservoir evaluation, but in the field of reservoir prediction, due to the complex nonlinear relationship between logging parameters and porosity, linear models cannot accurately predict porosity. Therefore, this paper uses machine learning methods t...
Autores principales: | Sun, Youzhuang, Zhang, Junhua, Yu, Zhengjun, Zhang, Yongan, Liu, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323947/ https://www.ncbi.nlm.nih.gov/pubmed/37426272 http://dx.doi.org/10.1021/acsomega.3c03247 |
Ejemplares similares
-
Non-intrusive speech quality assessment with attention-based ResNet-BiLSTM
por: Shen, Kailai, et al.
Publicado: (2023) -
Echo State Neural Network Based on an Improved Gray
Wolf Algorithm Predicts Porosity through Logging Data
por: Youzhuang, Sun, et al.
Publicado: (2023) -
An Optimal Stacked ResNet-BiLSTM-Based Accurate Detection and Classification of Genetic Disorders
por: Nandhini, K., et al.
Publicado: (2023) -
A Convolutional Neural Network Face Recognition Method Based on BiLSTM and Attention Mechanism
por: Qi, Xiaobo, et al.
Publicado: (2023) -
The Bidirectional
Gated Recurrent Unit Network Based
on the Inception Module (Inception-BiGRU) Predicts the Missing Data
by Well Logging Data
por: Sun, Youzhuang, et al.
Publicado: (2023)