Cargando…
AQDnet: Deep Neural Network for Protein–Ligand Docking Simulation
[Image: see text] We have developed an innovative system, AI QM Docking Net (AQDnet), which utilizes the three-dimensional structure of protein–ligand complexes to predict binding affinity. This system is novel in two respects: first, it significantly expands the training dataset by generating thous...
Autores principales: | Shiota, Koji, Suma, Akira, Ogawa, Hiroyuki, Yamaguchi, Takuya, Iida, Akio, Hata, Takahiro, Matsushita, Mutsuyoshi, Akutsu, Tatsuya, Tateno, Masaru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324054/ https://www.ncbi.nlm.nih.gov/pubmed/37426216 http://dx.doi.org/10.1021/acsomega.3c02411 |
Ejemplares similares
-
Conventional and novel impacts of ferric citrate on iron deficiency anemia and phosphorus metabolism in rats
por: IIDA, Akio, et al.
Publicado: (2020) -
Multi-shelled ECIF: improved extended connectivity interaction features for accurate binding affinity prediction
por: Shiota, Koji, et al.
Publicado: (2023) -
JTE-852, a novel spleen tyrosine kinase inhibitor, blocks antigen-induced allergic reactions in rats
por: KATO, Toshinobu, et al.
Publicado: (2018) -
Improvement of spontaneous locomotor activity with JAK inhibition by JTE-052 in rat adjuvant-induced arthritis
por: Tanimoto, Atsuo, et al.
Publicado: (2015) -
Quantum.Ligand.Dock: protein–ligand docking with quantum entanglement refinement on a GPU system
por: Kantardjiev, Alexander A.
Publicado: (2012)