Cargando…
Direct Air Capture and Integrated Conversion of Carbon Dioxide into Cyclic Carbonates with Basic Organic Salts
[Image: see text] Direct air capture and integrated conversion is a very attractive strategy to reduce CO(2) concentration in the atmosphere. However, the existing capturing processes are technologically challenging due to the costs of the processes and the low concentration of CO(2). The efficient...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324388/ https://www.ncbi.nlm.nih.gov/pubmed/37425281 http://dx.doi.org/10.1021/acssuschemeng.3c00890 |
Sumario: | [Image: see text] Direct air capture and integrated conversion is a very attractive strategy to reduce CO(2) concentration in the atmosphere. However, the existing capturing processes are technologically challenging due to the costs of the processes and the low concentration of CO(2). The efficient valorization of the CO(2) captured could help overcome many techno-economic limitations. Here, we present a novel economical methodology for direct air capture and conversion that is able to efficiently convert CO(2) from the air into cyclic carbonates. The new approach employs commercially available basic ionic liquids, works without the need for sophisticated and expensive co-catalysts or sorbents and under mild reaction conditions. The CO(2) from atmospheric air was efficiently captured by IL solution (0.98 molCO(2)/mol(IL)) and, subsequently, completely converted into cyclic carbonates using epoxides or halohydrins potentially derived from biomass as substrates. A mechanism of conversion was evaluated, which helped to identify relevant reaction intermediates based on halohydrins, and consequently, a 100% selectivity was obtained using the new methodology. |
---|