Cargando…
Development and validation of a nomogram model for predicting low muscle mass in patients undergoing hemodialysis
BACKGROUND: Muscle mass is important in determining patients’ nutritional status. However, measurement of muscle mass requires special equipment that is inconvenient for clinical use. We aimed to develop and validate a nomogram model for predicting low muscle mass in patients undergoing hemodialysis...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324438/ https://www.ncbi.nlm.nih.gov/pubmed/37408481 http://dx.doi.org/10.1080/0886022X.2023.2231097 |
Sumario: | BACKGROUND: Muscle mass is important in determining patients’ nutritional status. However, measurement of muscle mass requires special equipment that is inconvenient for clinical use. We aimed to develop and validate a nomogram model for predicting low muscle mass in patients undergoing hemodialysis (HD). METHODS: A total of 346 patients undergoing HD were enrolled and randomly divided into a 70% training set and a 30% validation set. The training set was used to develop the nomogram model, and the validation set was used to validate the developed model. The performance of the nomogram was assessed using the receiver operating characteristic (ROC) curve, a calibration curve, and the Hosmer–Lemeshow test. A decision curve analysis (DCA) was used to evaluate the clinical practicality of the nomogram model. RESULTS: Age, sex, body mass index (BMI), handgrip strength (HGS), and gait speed (GS) were included in the nomogram for predicting low skeletal muscle mass index (LSMI). The diagnostic nomogram model exhibited good discrimination with an area under the ROC curve (AUC) of 0.906 (95% CI, 0.862–0.940) in the training set and 0.917 (95% CI, 0.846–0.962) in the validation set. The calibration analysis also showed excellent results. The nomogram demonstrated a high net benefit in the clinical decision curve for both sets. CONCLUSIONS: The prediction model included age, sex, BMI, HGS, and GS, and it can successfully predict the presence of LSMI in patients undergoing HD. This nomogram provides an accurate visual tool for medical staff for prediction, early intervention, and graded management. |
---|