Cargando…
A deep learning solution for crystallographic structure determination
The general de novo solution of the crystallographic phase problem is difficult and only possible under certain conditions. This paper develops an initial pathway to a deep learning neural network approach for the phase problem in protein crystallography, based on a synthetic dataset of small fragme...
Autores principales: | Pan, Tom, Jin, Shikai, Miller, Mitchell D., Kyrillidis, Anastasios, Phillips, George N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324481/ https://www.ncbi.nlm.nih.gov/pubmed/37409806 http://dx.doi.org/10.1107/S2052252523004293 |
Ejemplares similares
-
Automating crystallographic structure solution and refinement of protein–ligand complexes
por: Echols, Nathaniel, et al.
Publicado: (2013) -
Tackling the crystallographic structure determination of the COP9 signalosome
por: Bunker, Richard D.
Publicado: (2016) -
Deducing chemical structure from crystallographically determined atomic coordinates
por: Bruno, Ian J., et al.
Publicado: (2011) -
Determination of crystallographic intensities from sparse data
por: Ayyer, Kartik, et al.
Publicado: (2015) -
CrystalMELA: a new crystallographic machine learning platform for crystal system determination
por: Corriero, Nicola, et al.
Publicado: (2023)