Cargando…
AlphaFold and the future of structural biology
This editorial acknowledges the transformative impact of new machine-learning methods, such as the use of AlphaFold, but also makes the case for the continuing need for experimental structural biology.
Autores principales: | Read, Randy J., Baker, Edward N., Bond, Charles S., Garman, Elspeth F., van Raaij, Mark J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324484/ https://www.ncbi.nlm.nih.gov/pubmed/37358477 http://dx.doi.org/10.1107/S2052252523004943 |
Ejemplares similares
-
Submission of structural biology data for review purposes
por: Baker, Edward N., et al.
Publicado: (2021) -
Submission of structural biology data for review purposes
por: Baker, Edward N., et al.
Publicado: (2021) -
Submission of structural biology data for review purposes
por: Baker, Edward N., et al.
Publicado: (2021) -
Implications of AlphaFold2 for crystallographic phasing by molecular replacement
por: McCoy, Airlie J., et al.
Publicado: (2022) -
Accelerating crystal structure determination with iterative AlphaFold prediction
por: Terwilliger, Thomas C., et al.
Publicado: (2023)