Cargando…
Efficient strategies for finger movement classification using surface electromyogram signals
One of the famous research areas in biomedical engineering and pattern recognition is finger movement classification. For hand and finger gesture recognition, the most widely used signals are the surface electromyogram (sEMG) signals. With the help of sEMG signals, four proposed techniques of finger...
Autores principales: | Prabhakar, Sunil Kumar, Won, Dong-Ok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324970/ https://www.ncbi.nlm.nih.gov/pubmed/37425001 http://dx.doi.org/10.3389/fnins.2023.1168112 |
Ejemplares similares
-
Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks
por: Lee, Kyung Hyun, et al.
Publicado: (2021) -
Classification of 41 Hand and Wrist Movements via Surface Electromyogram Using Deep Neural Network
por: Sri-iesaranusorn, Panyawut, et al.
Publicado: (2021) -
MCSNet: Channel Synergy-Based Human-Exoskeleton Interface With Surface Electromyogram
por: Shi, Kecheng, et al.
Publicado: (2021) -
Electroencephalogram and surface electromyogram fusion-based precise detection of lower limb voluntary movement using convolution neural network-long short-term memory model
por: Zhang, Xiaodong, et al.
Publicado: (2022) -
A Framework for Text Classification Using Evolutionary Contiguous Convolutional Neural Network and Swarm Based Deep Neural Network
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2022)