Cargando…

Successful defibrillation testing in patients undergoing elective subcutaneous implantable cardioverter-defibrillator generator replacement

AIMS: After implantation of a subcutaneous implantable cardioverter-defibrillator (S-ICD), a defibrillation test (DFT) is performed to ensure that the device can effectively detect and terminate the induced ventricular arrhythmia. Data on DFT efficacy at generator replacement are scarce with a limit...

Descripción completa

Detalles Bibliográficos
Autores principales: de Veld, Jolien A, Pepplinkhuizen, Shari, van der Stuijt, Willeke, Quast, Anne-Floor B E, Olde Nordkamp, Louise R A, Kooiman, Kirsten M, Wilde, Arthur A M, Smeding, Lonneke, Knops, Reinoud E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10325005/
https://www.ncbi.nlm.nih.gov/pubmed/37379530
http://dx.doi.org/10.1093/europace/euad184
Descripción
Sumario:AIMS: After implantation of a subcutaneous implantable cardioverter-defibrillator (S-ICD), a defibrillation test (DFT) is performed to ensure that the device can effectively detect and terminate the induced ventricular arrhythmia. Data on DFT efficacy at generator replacement are scarce with a limited number of patients and conflicting results. This study evaluates conversion efficacy during DFT at elective S-ICD generator replacement in a large cohort from our tertiary centre. METHODS AND RESULTS: Retrospective data of patients who underwent an S-ICD generator replacement for battery depletion with subsequent DFT between February 2015 and June 2022 were collected. Defibrillation test data were collected from both implant and replacement procedures. PRAETORIAN scores at implant were calculated. Defibrillation test was defined unsuccessful when two conversions at 65 J failed. A total of 121 patients were included. The defibrillation test was successful in 95% after the first and 98% after two consecutive tests. This was comparable with success rates at implant, despite a significant rise in shock impedance (73 ± 23 vs. 83 ± 24 Ω, P < 0.001). Both patients with an unsuccessful DFT at 65 J successfully converted with 80 J. CONCLUSION: This study shows a high DFT conversion rate at elective S-ICD generator replacement, which is comparable to conversion rates at implant, despite a rise in shock impedance. Evaluating device position before generator replacement may be recommended to optimize defibrillation success at generator replacement.