Cargando…
A deep learning approach to private data sharing of medical images using conditional generative adversarial networks (GANs)
Clinical data sharing can facilitate data-driven scientific research, allowing a broader range of questions to be addressed and thereby leading to greater understanding and innovation. However, sharing biomedical data can put sensitive personal information at risk. This is usually addressed by data...
Autores principales: | Sun, Hanxi, Plawinski, Jason, Subramaniam, Sajanth, Jamaludin, Amir, Kadir, Timor, Readie, Aimee, Ligozio, Gregory, Ohlssen, David, Baillie, Mark, Coroller, Thibaud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10325103/ https://www.ncbi.nlm.nih.gov/pubmed/37410795 http://dx.doi.org/10.1371/journal.pone.0280316 |
Ejemplares similares
-
Evaluation of GAN-Based Model for Adversarial Training
por: Zhao, Weimin, et al.
Publicado: (2023) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
Extended Spatially Localized Perturbation GAN (eSLP-GAN) for Robust Adversarial Camouflage Patches †
por: Kim, Yongsu, et al.
Publicado: (2021) -
Seminar: Open challenges for improving Generative Adversarial Networks (GANs)
por: Goodfellow, Ian
Publicado: (2017) -
MB-GAN: Microbiome Simulation via Generative Adversarial Network
por: Rong, Ruichen, et al.
Publicado: (2021)