Cargando…
A generalizable framework to comprehensively predict epigenome, chromatin organization, and transcriptome
Many deep learning approaches have been proposed to predict epigenetic profiles, chromatin organization, and transcription activity. While these approaches achieve satisfactory performance in predicting one modality from another, the learned representations are not generalizable across predictive ta...
Autores principales: | Zhang, Zhenhao, Feng, Fan, Qiu, Yiyang, Liu, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10325920/ https://www.ncbi.nlm.nih.gov/pubmed/37224527 http://dx.doi.org/10.1093/nar/gkad436 |
Ejemplares similares
-
Painters in chromatin: a unified quantitative framework to systematically characterize epigenome regulation and memory
por: Abdulla, Amith Z, et al.
Publicado: (2022) -
Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains
por: Jost, Daniel, et al.
Publicado: (2014) -
chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome
por: Font-Burgada, Joan, et al.
Publicado: (2014) -
Connecting high-resolution 3D chromatin organization with epigenomics
por: Feng, Fan, et al.
Publicado: (2022) -
Weighted enrichment method for prediction of transcription regulators from transcriptome and global chromatin immunoprecipitation data
por: Kawakami, Eiryo, et al.
Publicado: (2016)