Cargando…
A model eye for fluorescent characterization of retinal cultures and tissues
Many human neural or neurodegenerative diseases strongly affect the ocular and retinal environment showing peculiar alterations which can be employed as specific disease biomarkers. The noninvasive optical accessibility of the retina makes the ocular investigation a potentially competitive strategy...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326009/ https://www.ncbi.nlm.nih.gov/pubmed/37415074 http://dx.doi.org/10.1038/s41598-023-37806-6 |
Sumario: | Many human neural or neurodegenerative diseases strongly affect the ocular and retinal environment showing peculiar alterations which can be employed as specific disease biomarkers. The noninvasive optical accessibility of the retina makes the ocular investigation a potentially competitive strategy for screening, thus the development of retinal biomarkers is rapidly growing. Nevertheless, a tool to study and image biomarkers or biological samples in a human-like eye environment is still missing. Here we report on a modular and versatile eye model designed to host biological samples, such as retinal cultures differentiated from human induced pluripotent stem cells and ex-vivo retinal tissue, but also suited to host any kind of retinal biomarkers. We characterized the imaging performance of this eye model on standard biomarkers such as Alexa Fluor 532 and Alexa Fluor 594. |
---|