Cargando…

Synthetic T2-weighted fat sat based on a generative adversarial network shows potential for scan time reduction in spine imaging in a multicenter test dataset

OBJECTIVES: T2-weighted (w) fat sat (fs) sequences, which are important in spine MRI, require a significant amount of scan time. Generative adversarial networks (GANs) can generate synthetic T2-w fs images. We evaluated the potential of synthetic T2-w fs images by comparing them to their true counte...

Descripción completa

Detalles Bibliográficos
Autores principales: Schlaeger, Sarah, Drummer, Katharina, El Husseini, Malek, Kofler, Florian, Sollmann, Nico, Schramm, Severin, Zimmer, Claus, Wiestler, Benedikt, Kirschke, Jan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326102/
https://www.ncbi.nlm.nih.gov/pubmed/36928566
http://dx.doi.org/10.1007/s00330-023-09512-4
Descripción
Sumario:OBJECTIVES: T2-weighted (w) fat sat (fs) sequences, which are important in spine MRI, require a significant amount of scan time. Generative adversarial networks (GANs) can generate synthetic T2-w fs images. We evaluated the potential of synthetic T2-w fs images by comparing them to their true counterpart regarding image and fat saturation quality, and diagnostic agreement in a heterogenous, multicenter dataset. METHODS: A GAN was used to synthesize T2-w fs from T1- and non-fs T2-w. The training dataset comprised scans of 73 patients from two scanners, and the test dataset, scans of 101 patients from 38 multicenter scanners. Apparent signal- and contrast-to-noise ratios (aSNR/aCNR) were measured in true and synthetic T2-w fs. Two neuroradiologists graded image (5-point scale) and fat saturation quality (3-point scale). To evaluate whether the T2-w fs images are indistinguishable, a Turing test was performed by eleven neuroradiologists. Six pathologies were graded on the synthetic protocol (with synthetic T2-w fs) and the original protocol (with true T2-w fs) by the two neuroradiologists. RESULTS: aSNR and aCNR were not significantly different between the synthetic and true T2-w fs images. Subjective image quality was graded higher for synthetic T2-w fs (p = 0.023). In the Turing test, synthetic and true T2-w fs could not be distinguished from each other. The intermethod agreement between synthetic and original protocol ranged from substantial to almost perfect agreement for the evaluated pathologies. DISCUSSION: The synthetic T2-w fs might replace a physical T2-w fs. Our approach validated on a challenging, multicenter dataset is highly generalizable and allows for shorter scan protocols. KEY POINTS: • Generative adversarial networks can be used to generate synthetic T2-weighted fat sat images from T1- and non-fat sat T2-weighted images of the spine. • The synthetic T2-weighted fat sat images might replace a physically acquired T2-weighted fat sat showing a better image quality and excellent diagnostic agreement with the true T2-weighted fat images. • The present approach validated on a challenging, multicenter dataset is highly generalizable and allows for significantly shorter scan protocols. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-023-09512-4.