Cargando…

Toward a fractalomic idiotype/anti-idiotypic paradigm

The CoViD-19 pandemic has demonstrated the need for future developments in anti-viral immunology. We propose that artificial intelligence (AI) and machine learning, and in particular fractal analysis could play a crucial role in that context. Fractals - never-ending repeats of self-similar shapes wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiappelli, Francesco, Penhaskashi, Jaden
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326330/
https://www.ncbi.nlm.nih.gov/pubmed/37426493
http://dx.doi.org/10.6026/97320630018730
Descripción
Sumario:The CoViD-19 pandemic has demonstrated the need for future developments in anti-viral immunology. We propose that artificial intelligence (AI) and machine learning, and in particular fractal analysis could play a crucial role in that context. Fractals - never-ending repeats of self-similar shapes whose composite tend to resemble the whole - are found in most natural biological structures including immunoglobulin and antigenic epitopes. Increased knowledge of the fractalomic properties of the idiotype/anti-idiotypic paradigm should help develop a novel and improved simplified artificial model of the immune system. Case in point, the regulation and dampening of antibodies as well as the synergetic recognition of an antigen by multiple idiotypes are both immune mechanisms that require further analysis. An enhanced understanding of these complexities could lead to better data analysis for novel vaccines to improve their sensitivity and specificity as well as open other new doors in the field of immunology.