Cargando…

Extracting electromyographic signals from multi-channel LFPs using independent component analysis without direct muscular recording

Electromyography (EMG) has been commonly used for the precise identification of animal behavior. However, it is often not recorded together with in vivo electrophysiology due to the need for additional surgeries and setups and the high risk of mechanical wire disconnection. While independent compone...

Descripción completa

Detalles Bibliográficos
Autores principales: Osanai, Hisayuki, Yamamoto, Jun, Kitamura, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326347/
https://www.ncbi.nlm.nih.gov/pubmed/37426755
http://dx.doi.org/10.1016/j.crmeth.2023.100482
Descripción
Sumario:Electromyography (EMG) has been commonly used for the precise identification of animal behavior. However, it is often not recorded together with in vivo electrophysiology due to the need for additional surgeries and setups and the high risk of mechanical wire disconnection. While independent component analysis (ICA) has been used to reduce noise from field potential data, there has been no attempt to proactively use the removed “noise,” of which EMG signals are thought to be one of the major sources. Here, we demonstrate that EMG signals can be reconstructed without direct EMG recording using the “noise” ICA component from local field potentials. The extracted component is highly correlated with directly measured EMG, termed IC-EMG. IC-EMG is useful for measuring an animal’s sleep/wake, freezing response, and non-rapid eye movement (NREM)/REM sleep states consistently with actual EMG. Our method has advantages in precise and long-term behavioral measurement in wide-ranging in vivo electrophysiology experiments.