Cargando…
DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of fundamental cellular processes at the single-cell level with high temporal resolution. Successful application of single-cell time-lapse microscopy requires automated segmentation and tracking of hund...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326378/ https://www.ncbi.nlm.nih.gov/pubmed/37426758 http://dx.doi.org/10.1016/j.crmeth.2023.100500 |
_version_ | 1785069414814580736 |
---|---|
author | Zargari, Abolfazl Lodewijk, Gerrald A. Mashhadi, Najmeh Cook, Nathan Neudorf, Celine W. Araghbidikashani, Kimiasadat Hays, Robert Kozuki, Sayaka Rubio, Stefany Hrabeta-Robinson, Eva Brooks, Angela Hinck, Lindsay Shariati, S. Ali |
author_facet | Zargari, Abolfazl Lodewijk, Gerrald A. Mashhadi, Najmeh Cook, Nathan Neudorf, Celine W. Araghbidikashani, Kimiasadat Hays, Robert Kozuki, Sayaka Rubio, Stefany Hrabeta-Robinson, Eva Brooks, Angela Hinck, Lindsay Shariati, S. Ali |
author_sort | Zargari, Abolfazl |
collection | PubMed |
description | Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of fundamental cellular processes at the single-cell level with high temporal resolution. Successful application of single-cell time-lapse microscopy requires automated segmentation and tracking of hundreds of individual cells over several time points. However, segmentation and tracking of single cells remain challenging for the analysis of time-lapse microscopy images, in particular for widely available and non-toxic imaging modalities such as phase-contrast imaging. This work presents a versatile and trainable deep-learning model, termed DeepSea, that allows for both segmentation and tracking of single cells in sequences of phase-contrast live microscopy images with higher precision than existing models. We showcase the application of DeepSea by analyzing cell size regulation in embryonic stem cells. |
format | Online Article Text |
id | pubmed-10326378 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103263782023-07-08 DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy Zargari, Abolfazl Lodewijk, Gerrald A. Mashhadi, Najmeh Cook, Nathan Neudorf, Celine W. Araghbidikashani, Kimiasadat Hays, Robert Kozuki, Sayaka Rubio, Stefany Hrabeta-Robinson, Eva Brooks, Angela Hinck, Lindsay Shariati, S. Ali Cell Rep Methods Article Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of fundamental cellular processes at the single-cell level with high temporal resolution. Successful application of single-cell time-lapse microscopy requires automated segmentation and tracking of hundreds of individual cells over several time points. However, segmentation and tracking of single cells remain challenging for the analysis of time-lapse microscopy images, in particular for widely available and non-toxic imaging modalities such as phase-contrast imaging. This work presents a versatile and trainable deep-learning model, termed DeepSea, that allows for both segmentation and tracking of single cells in sequences of phase-contrast live microscopy images with higher precision than existing models. We showcase the application of DeepSea by analyzing cell size regulation in embryonic stem cells. Elsevier 2023-06-12 /pmc/articles/PMC10326378/ /pubmed/37426758 http://dx.doi.org/10.1016/j.crmeth.2023.100500 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Zargari, Abolfazl Lodewijk, Gerrald A. Mashhadi, Najmeh Cook, Nathan Neudorf, Celine W. Araghbidikashani, Kimiasadat Hays, Robert Kozuki, Sayaka Rubio, Stefany Hrabeta-Robinson, Eva Brooks, Angela Hinck, Lindsay Shariati, S. Ali DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy |
title | DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy |
title_full | DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy |
title_fullStr | DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy |
title_full_unstemmed | DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy |
title_short | DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy |
title_sort | deepsea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326378/ https://www.ncbi.nlm.nih.gov/pubmed/37426758 http://dx.doi.org/10.1016/j.crmeth.2023.100500 |
work_keys_str_mv | AT zargariabolfazl deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT lodewijkgerralda deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT mashhadinajmeh deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT cooknathan deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT neudorfcelinew deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT araghbidikashanikimiasadat deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT haysrobert deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT kozukisayaka deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT rubiostefany deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT hrabetarobinsoneva deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT brooksangela deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT hincklindsay deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy AT shariatisali deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy |