Cargando…

DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy

Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of fundamental cellular processes at the single-cell level with high temporal resolution. Successful application of single-cell time-lapse microscopy requires automated segmentation and tracking of hund...

Descripción completa

Detalles Bibliográficos
Autores principales: Zargari, Abolfazl, Lodewijk, Gerrald A., Mashhadi, Najmeh, Cook, Nathan, Neudorf, Celine W., Araghbidikashani, Kimiasadat, Hays, Robert, Kozuki, Sayaka, Rubio, Stefany, Hrabeta-Robinson, Eva, Brooks, Angela, Hinck, Lindsay, Shariati, S. Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326378/
https://www.ncbi.nlm.nih.gov/pubmed/37426758
http://dx.doi.org/10.1016/j.crmeth.2023.100500
_version_ 1785069414814580736
author Zargari, Abolfazl
Lodewijk, Gerrald A.
Mashhadi, Najmeh
Cook, Nathan
Neudorf, Celine W.
Araghbidikashani, Kimiasadat
Hays, Robert
Kozuki, Sayaka
Rubio, Stefany
Hrabeta-Robinson, Eva
Brooks, Angela
Hinck, Lindsay
Shariati, S. Ali
author_facet Zargari, Abolfazl
Lodewijk, Gerrald A.
Mashhadi, Najmeh
Cook, Nathan
Neudorf, Celine W.
Araghbidikashani, Kimiasadat
Hays, Robert
Kozuki, Sayaka
Rubio, Stefany
Hrabeta-Robinson, Eva
Brooks, Angela
Hinck, Lindsay
Shariati, S. Ali
author_sort Zargari, Abolfazl
collection PubMed
description Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of fundamental cellular processes at the single-cell level with high temporal resolution. Successful application of single-cell time-lapse microscopy requires automated segmentation and tracking of hundreds of individual cells over several time points. However, segmentation and tracking of single cells remain challenging for the analysis of time-lapse microscopy images, in particular for widely available and non-toxic imaging modalities such as phase-contrast imaging. This work presents a versatile and trainable deep-learning model, termed DeepSea, that allows for both segmentation and tracking of single cells in sequences of phase-contrast live microscopy images with higher precision than existing models. We showcase the application of DeepSea by analyzing cell size regulation in embryonic stem cells.
format Online
Article
Text
id pubmed-10326378
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103263782023-07-08 DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy Zargari, Abolfazl Lodewijk, Gerrald A. Mashhadi, Najmeh Cook, Nathan Neudorf, Celine W. Araghbidikashani, Kimiasadat Hays, Robert Kozuki, Sayaka Rubio, Stefany Hrabeta-Robinson, Eva Brooks, Angela Hinck, Lindsay Shariati, S. Ali Cell Rep Methods Article Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of fundamental cellular processes at the single-cell level with high temporal resolution. Successful application of single-cell time-lapse microscopy requires automated segmentation and tracking of hundreds of individual cells over several time points. However, segmentation and tracking of single cells remain challenging for the analysis of time-lapse microscopy images, in particular for widely available and non-toxic imaging modalities such as phase-contrast imaging. This work presents a versatile and trainable deep-learning model, termed DeepSea, that allows for both segmentation and tracking of single cells in sequences of phase-contrast live microscopy images with higher precision than existing models. We showcase the application of DeepSea by analyzing cell size regulation in embryonic stem cells. Elsevier 2023-06-12 /pmc/articles/PMC10326378/ /pubmed/37426758 http://dx.doi.org/10.1016/j.crmeth.2023.100500 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Zargari, Abolfazl
Lodewijk, Gerrald A.
Mashhadi, Najmeh
Cook, Nathan
Neudorf, Celine W.
Araghbidikashani, Kimiasadat
Hays, Robert
Kozuki, Sayaka
Rubio, Stefany
Hrabeta-Robinson, Eva
Brooks, Angela
Hinck, Lindsay
Shariati, S. Ali
DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
title DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
title_full DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
title_fullStr DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
title_full_unstemmed DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
title_short DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
title_sort deepsea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326378/
https://www.ncbi.nlm.nih.gov/pubmed/37426758
http://dx.doi.org/10.1016/j.crmeth.2023.100500
work_keys_str_mv AT zargariabolfazl deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT lodewijkgerralda deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT mashhadinajmeh deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT cooknathan deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT neudorfcelinew deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT araghbidikashanikimiasadat deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT haysrobert deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT kozukisayaka deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT rubiostefany deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT hrabetarobinsoneva deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT brooksangela deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT hincklindsay deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy
AT shariatisali deepseaisanefficientdeeplearningmodelforsinglecellsegmentationandtrackingintimelapsemicroscopy