Cargando…
BNLoop-GAN: a multi-loop generative adversarial model on brain network learning to classify Alzheimer’s disease
Recent advancements in AI, big data analytics, and magnetic resonance imaging (MRI) have revolutionized the study of brain diseases such as Alzheimer’s Disease (AD). However, most AI models used for neuroimaging classification tasks have limitations in their learning strategies, that is batch traini...
Autores principales: | Cao, Yu, Kuai, Hongzhi, Liang, Peipeng, Pan, Jeng-Shyang, Yan, Jianzhuo, Zhong, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326383/ https://www.ncbi.nlm.nih.gov/pubmed/37424996 http://dx.doi.org/10.3389/fnins.2023.1202382 |
Ejemplares similares
-
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
Seminar: Open challenges for improving Generative Adversarial Networks (GANs)
por: Goodfellow, Ian
Publicado: (2017) -
MB-GAN: Microbiome Simulation via Generative Adversarial Network
por: Rong, Ruichen, et al.
Publicado: (2021) -
SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation
por: Hazra, Debapriya, et al.
Publicado: (2020) -
Generation of synthetic ground glass nodules using generative adversarial networks (GANs)
por: Wang, Zhixiang, et al.
Publicado: (2022)