Cargando…

Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation

[Image: see text] Chiral metal–organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO(3))(2), S-indoline-2-carboxylic...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Chenghua, Song, Bai-Qiao, Lusi, Matteo, Bezrukov, Andrey A., Haskins, Molly M., Gao, Mei-Yan, Peng, Yun-Lei, Ma, Jian-Gong, Cheng, Peng, Mukherjee, Soumya, Zaworotko, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326857/
https://www.ncbi.nlm.nih.gov/pubmed/37426545
http://dx.doi.org/10.1021/acs.cgd.3c00446
_version_ 1785069510470926336
author Deng, Chenghua
Song, Bai-Qiao
Lusi, Matteo
Bezrukov, Andrey A.
Haskins, Molly M.
Gao, Mei-Yan
Peng, Yun-Lei
Ma, Jian-Gong
Cheng, Peng
Mukherjee, Soumya
Zaworotko, Michael J.
author_facet Deng, Chenghua
Song, Bai-Qiao
Lusi, Matteo
Bezrukov, Andrey A.
Haskins, Molly M.
Gao, Mei-Yan
Peng, Yun-Lei
Ma, Jian-Gong
Cheng, Peng
Mukherjee, Soumya
Zaworotko, Michael J.
author_sort Deng, Chenghua
collection PubMed
description [Image: see text] Chiral metal–organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO(3))(2), S-indoline-2-carboxylic acid (S-IDECH), and 4,4′-bipyridine (bipy) afforded a homochiral cationic diamondoid, dia, network, [Ni(S-IDEC)(bipy)(H(2)O)][NO(3)], CMOM-5. Composed of rod building blocks (RBBs) cross-linked by bipy linkers, the activated form of CMOM-5 adapted its pore structure to bind four guest molecules, 1-phenyl-1-butanol (1P1B), 4-phenyl-2-butanol (4P2B), 1-(4-methoxyphenyl)ethanol (MPE), and methyl mandelate (MM), making it an example of a chiral crystalline sponge (CCS). Chiral resolution experiments revealed enantiomeric excess, ee, values of 36.2–93.5%. The structural adaptability of CMOM-5 enabled eight enantiomer@CMOM-5 crystal structures to be determined. The five ordered crystal structures revealed that host–guest hydrogen-bonding interactions are behind the observed enantioselectivity, three of which represent the first crystal structures determined of the ambient liquids R-4P2B, S-4P2B, and R-MPE.
format Online
Article
Text
id pubmed-10326857
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103268572023-07-08 Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation Deng, Chenghua Song, Bai-Qiao Lusi, Matteo Bezrukov, Andrey A. Haskins, Molly M. Gao, Mei-Yan Peng, Yun-Lei Ma, Jian-Gong Cheng, Peng Mukherjee, Soumya Zaworotko, Michael J. Cryst Growth Des [Image: see text] Chiral metal–organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO(3))(2), S-indoline-2-carboxylic acid (S-IDECH), and 4,4′-bipyridine (bipy) afforded a homochiral cationic diamondoid, dia, network, [Ni(S-IDEC)(bipy)(H(2)O)][NO(3)], CMOM-5. Composed of rod building blocks (RBBs) cross-linked by bipy linkers, the activated form of CMOM-5 adapted its pore structure to bind four guest molecules, 1-phenyl-1-butanol (1P1B), 4-phenyl-2-butanol (4P2B), 1-(4-methoxyphenyl)ethanol (MPE), and methyl mandelate (MM), making it an example of a chiral crystalline sponge (CCS). Chiral resolution experiments revealed enantiomeric excess, ee, values of 36.2–93.5%. The structural adaptability of CMOM-5 enabled eight enantiomer@CMOM-5 crystal structures to be determined. The five ordered crystal structures revealed that host–guest hydrogen-bonding interactions are behind the observed enantioselectivity, three of which represent the first crystal structures determined of the ambient liquids R-4P2B, S-4P2B, and R-MPE. American Chemical Society 2023-05-16 /pmc/articles/PMC10326857/ /pubmed/37426545 http://dx.doi.org/10.1021/acs.cgd.3c00446 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Deng, Chenghua
Song, Bai-Qiao
Lusi, Matteo
Bezrukov, Andrey A.
Haskins, Molly M.
Gao, Mei-Yan
Peng, Yun-Lei
Ma, Jian-Gong
Cheng, Peng
Mukherjee, Soumya
Zaworotko, Michael J.
Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation
title Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation
title_full Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation
title_fullStr Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation
title_full_unstemmed Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation
title_short Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation
title_sort crystal engineering of a chiral crystalline sponge that enables absolute structure determination and enantiomeric separation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326857/
https://www.ncbi.nlm.nih.gov/pubmed/37426545
http://dx.doi.org/10.1021/acs.cgd.3c00446
work_keys_str_mv AT dengchenghua crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT songbaiqiao crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT lusimatteo crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT bezrukovandreya crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT haskinsmollym crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT gaomeiyan crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT pengyunlei crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT majiangong crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT chengpeng crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT mukherjeesoumya crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation
AT zaworotkomichaelj crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation