Cargando…
Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation
[Image: see text] Chiral metal–organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO(3))(2), S-indoline-2-carboxylic...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326857/ https://www.ncbi.nlm.nih.gov/pubmed/37426545 http://dx.doi.org/10.1021/acs.cgd.3c00446 |
_version_ | 1785069510470926336 |
---|---|
author | Deng, Chenghua Song, Bai-Qiao Lusi, Matteo Bezrukov, Andrey A. Haskins, Molly M. Gao, Mei-Yan Peng, Yun-Lei Ma, Jian-Gong Cheng, Peng Mukherjee, Soumya Zaworotko, Michael J. |
author_facet | Deng, Chenghua Song, Bai-Qiao Lusi, Matteo Bezrukov, Andrey A. Haskins, Molly M. Gao, Mei-Yan Peng, Yun-Lei Ma, Jian-Gong Cheng, Peng Mukherjee, Soumya Zaworotko, Michael J. |
author_sort | Deng, Chenghua |
collection | PubMed |
description | [Image: see text] Chiral metal–organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO(3))(2), S-indoline-2-carboxylic acid (S-IDECH), and 4,4′-bipyridine (bipy) afforded a homochiral cationic diamondoid, dia, network, [Ni(S-IDEC)(bipy)(H(2)O)][NO(3)], CMOM-5. Composed of rod building blocks (RBBs) cross-linked by bipy linkers, the activated form of CMOM-5 adapted its pore structure to bind four guest molecules, 1-phenyl-1-butanol (1P1B), 4-phenyl-2-butanol (4P2B), 1-(4-methoxyphenyl)ethanol (MPE), and methyl mandelate (MM), making it an example of a chiral crystalline sponge (CCS). Chiral resolution experiments revealed enantiomeric excess, ee, values of 36.2–93.5%. The structural adaptability of CMOM-5 enabled eight enantiomer@CMOM-5 crystal structures to be determined. The five ordered crystal structures revealed that host–guest hydrogen-bonding interactions are behind the observed enantioselectivity, three of which represent the first crystal structures determined of the ambient liquids R-4P2B, S-4P2B, and R-MPE. |
format | Online Article Text |
id | pubmed-10326857 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-103268572023-07-08 Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation Deng, Chenghua Song, Bai-Qiao Lusi, Matteo Bezrukov, Andrey A. Haskins, Molly M. Gao, Mei-Yan Peng, Yun-Lei Ma, Jian-Gong Cheng, Peng Mukherjee, Soumya Zaworotko, Michael J. Cryst Growth Des [Image: see text] Chiral metal–organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO(3))(2), S-indoline-2-carboxylic acid (S-IDECH), and 4,4′-bipyridine (bipy) afforded a homochiral cationic diamondoid, dia, network, [Ni(S-IDEC)(bipy)(H(2)O)][NO(3)], CMOM-5. Composed of rod building blocks (RBBs) cross-linked by bipy linkers, the activated form of CMOM-5 adapted its pore structure to bind four guest molecules, 1-phenyl-1-butanol (1P1B), 4-phenyl-2-butanol (4P2B), 1-(4-methoxyphenyl)ethanol (MPE), and methyl mandelate (MM), making it an example of a chiral crystalline sponge (CCS). Chiral resolution experiments revealed enantiomeric excess, ee, values of 36.2–93.5%. The structural adaptability of CMOM-5 enabled eight enantiomer@CMOM-5 crystal structures to be determined. The five ordered crystal structures revealed that host–guest hydrogen-bonding interactions are behind the observed enantioselectivity, three of which represent the first crystal structures determined of the ambient liquids R-4P2B, S-4P2B, and R-MPE. American Chemical Society 2023-05-16 /pmc/articles/PMC10326857/ /pubmed/37426545 http://dx.doi.org/10.1021/acs.cgd.3c00446 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Deng, Chenghua Song, Bai-Qiao Lusi, Matteo Bezrukov, Andrey A. Haskins, Molly M. Gao, Mei-Yan Peng, Yun-Lei Ma, Jian-Gong Cheng, Peng Mukherjee, Soumya Zaworotko, Michael J. Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation |
title | Crystal Engineering of a Chiral Crystalline Sponge
That Enables Absolute Structure Determination and Enantiomeric Separation |
title_full | Crystal Engineering of a Chiral Crystalline Sponge
That Enables Absolute Structure Determination and Enantiomeric Separation |
title_fullStr | Crystal Engineering of a Chiral Crystalline Sponge
That Enables Absolute Structure Determination and Enantiomeric Separation |
title_full_unstemmed | Crystal Engineering of a Chiral Crystalline Sponge
That Enables Absolute Structure Determination and Enantiomeric Separation |
title_short | Crystal Engineering of a Chiral Crystalline Sponge
That Enables Absolute Structure Determination and Enantiomeric Separation |
title_sort | crystal engineering of a chiral crystalline sponge
that enables absolute structure determination and enantiomeric separation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326857/ https://www.ncbi.nlm.nih.gov/pubmed/37426545 http://dx.doi.org/10.1021/acs.cgd.3c00446 |
work_keys_str_mv | AT dengchenghua crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT songbaiqiao crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT lusimatteo crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT bezrukovandreya crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT haskinsmollym crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT gaomeiyan crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT pengyunlei crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT majiangong crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT chengpeng crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT mukherjeesoumya crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation AT zaworotkomichaelj crystalengineeringofachiralcrystallinespongethatenablesabsolutestructuredeterminationandenantiomericseparation |