Cargando…
A Robust Framework for Generating Adsorption Isotherms to Screen Materials for Carbon Capture
[Image: see text] To rank the performance of materials for a given carbon capture process, we rely on pure component isotherms from which we predict the mixture isotherms. For screening a large number of materials, we also increasingly rely on isotherms predicted from molecular simulations. In parti...
Autores principales: | Moubarak, Elias, Moosavi, Seyed Mohamad, Charalambous, Charithea, Garcia, Susana, Smit, Berend |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326871/ https://www.ncbi.nlm.nih.gov/pubmed/37425135 http://dx.doi.org/10.1021/acs.iecr.3c01358 |
Ejemplares similares
-
A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2022) -
Machine learning for industrial processes: Forecasting amine emissions from a carbon capture plant
por: Jablonka, Kevin Maik, et al.
Publicado: (2023) -
Capturing chemical intuition in synthesis of metal-organic frameworks
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2019) -
Force-Field Prediction of Materials Properties in
Metal-Organic Frameworks
por: Boyd, Peter G., et al.
Publicado: (2016) -
The
Role of Machine Learning in the Understanding
and Design of Materials
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2020)