Cargando…
Deep convolutional neural networks for multiple histologic types of ovarian tumors classification in ultrasound images
OBJECTIVE: This study aimed to evaluate and validate the performance of deep convolutional neural networks when discriminating different histologic types of ovarian tumor in ultrasound (US) images. MATERIAL AND METHODS: Our retrospective study took 1142 US images from 328 patients from January 2019...
Autores principales: | Wu, Meijing, Cui, Guangxia, Lv, Shuchang, Chen, Lijiang, Tian, Zongmei, Yang, Min, Bai, Wenpei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326903/ https://www.ncbi.nlm.nih.gov/pubmed/37427129 http://dx.doi.org/10.3389/fonc.2023.1154200 |
Ejemplares similares
-
Improving the Segmentation Accuracy of Ovarian-Tumor Ultrasound Images Using Image Inpainting
por: Chen, Lijiang, et al.
Publicado: (2023) -
Application of Deep Convolutional Neural Networks for Discriminating Benign, Borderline, and Malignant Serous Ovarian Tumors From Ultrasound Images
por: Wang, Huiquan, et al.
Publicado: (2021) -
Prediction of Radiation Pneumonitis With Dose Distribution: A Convolutional Neural Network (CNN) Based Model
por: Liang, Bin, et al.
Publicado: (2020) -
Classification and Diagnosis of Residual Thyroid Tissue in SPECT Images Based on Fine-Tuning Deep Convolutional Neural Network
por: Guo, Yinxiang, et al.
Publicado: (2021) -
Automatic Detection and Classification of Focal Liver Lesions Based on Deep Convolutional Neural Networks: A Preliminary Study
por: Zhou, Jiarong, et al.
Publicado: (2021)