Cargando…

Evaluation of rRNA depletion methods for capturing the RNA virome from environmental surfaces

OBJECTIVE: Metatranscriptomic analysis of RNA viromes on built-environment surfaces is hampered by low RNA yields and high abundance of rRNA. Therefore, we evaluated the quality of libraries, efficiency of rRNA depletion, and viral detection sensitivity using a mock community and a melamine-coated t...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiwa, Yuh, Baba, Tomoya, Sierra, Maria A., Kim, JangKeun, Mason, Christopher E., Suzuki, Haruo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326927/
https://www.ncbi.nlm.nih.gov/pubmed/37420286
http://dx.doi.org/10.1186/s13104-023-06417-9
Descripción
Sumario:OBJECTIVE: Metatranscriptomic analysis of RNA viromes on built-environment surfaces is hampered by low RNA yields and high abundance of rRNA. Therefore, we evaluated the quality of libraries, efficiency of rRNA depletion, and viral detection sensitivity using a mock community and a melamine-coated table surface RNA with levels below those required (< 5 ng) with a library preparation kit (NEBNext Ultra II Directional RNA Library Prep Kit). RESULTS: Good-quality RNA libraries were obtained from 0.1 ng of mock community and table surface RNA by changing the adapter concentration and number of PCR cycles. Differences in the target species of the rRNA depletion method affected the community composition and sensitivity of virus detection. The percentage of viral occupancy in two replicates was 0.259 and 0.290% in both human and bacterial rRNA-depleted samples, a 3.4 and 3.8-fold increase compared with that for only bacterial rRNA-depleted samples. Comparison of SARS-CoV-2 spiked-in human rRNA and bacterial rRNA-depleted samples suggested that more SARS-CoV-2 reads were detected in bacterial rRNA-depleted samples. We demonstrated that metatranscriptome analysis of RNA viromes is possible from RNA isolated from an indoor surface (representing a built-environment surface) using a standard library preparation kit. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13104-023-06417-9.