Cargando…
Mutation-Attention (MuAt): deep representation learning of somatic mutations for tumour typing and subtyping
BACKGROUND: Cancer genome sequencing enables accurate classification of tumours and tumour subtypes. However, prediction performance is still limited using exome-only sequencing and for tumour types with low somatic mutation burden such as many paediatric tumours. Moreover, the ability to leverage d...
Autores principales: | Sanjaya, Prima, Maljanen, Katri, Katainen, Riku, Waszak, Sebastian M., Aaltonen, Lauri A., Stegle, Oliver, Korbel, Jan O., Pitkänen, Esa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326961/ https://www.ncbi.nlm.nih.gov/pubmed/37420249 http://dx.doi.org/10.1186/s13073-023-01204-4 |
Ejemplares similares
-
Exome-wide somatic mutation characterization of small bowel adenocarcinoma
por: Hänninen, Ulrika A., et al.
Publicado: (2018) -
William McNiven Muat
Publicado: (1927) -
Mutational processes of distinct POLE exonuclease domain mutants drive an enrichment of a specific TP53 mutation in colorectal cancer
por: Fang, Hu, et al.
Publicado: (2020) -
Frequent L1 retrotranspositions originating from TTC28 in colorectal cancer
por: Pitkänen, Esa, et al.
Publicado: (2014) -
Detection of subclonal L1 transductions in colorectal cancer by long-distance inverse-PCR and Nanopore sequencing
por: Pradhan, Barun, et al.
Publicado: (2017)