Cargando…

Tessellation of artificial touch via microstimulation of human somatosensory cortex

When we interact with objects, we rely on signals from the hand that convey information about the object and our interaction with it. A basic feature of these interactions, the locations of contacts between the hand and object, is often only available via the sense of touch. Information about locati...

Descripción completa

Detalles Bibliográficos
Autores principales: Greenspon, Charles M., Shelchkova, Natalya D., Valle, Giacomo, Hobbs, Taylor G., Berger-Wolf, Ev I., Hutchison, Brianna C., Dogruoz, Efe, Verbarschott, Ceci, Callier, Thierri, Sobinov, Anton R., Okorokova, Elizaveta V., Jordan, Patrick M., Prasad, Dillan, He, Qinpu, Liu, Fang, Kirsch, Robert F., Miller, Jonathan P., Lee, Ray C., Satzer, David, Gonzalez-Martinez, Jorge, Warnke, Peter C., Miller, Lee E., Boninger, Michael L., Ajiboye, Abidemi B., Graczyk, Emily L., Downey, John E., Collinger, Jennifer L., Hatsopoulos, Nicholas G., Gaunt, Robert A., Bensmaia, Sliman J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327055/
https://www.ncbi.nlm.nih.gov/pubmed/37425877
http://dx.doi.org/10.1101/2023.06.23.545425
_version_ 1785069549350027264
author Greenspon, Charles M.
Shelchkova, Natalya D.
Valle, Giacomo
Hobbs, Taylor G.
Berger-Wolf, Ev I.
Hutchison, Brianna C.
Dogruoz, Efe
Verbarschott, Ceci
Callier, Thierri
Sobinov, Anton R.
Okorokova, Elizaveta V.
Jordan, Patrick M.
Prasad, Dillan
He, Qinpu
Liu, Fang
Kirsch, Robert F.
Miller, Jonathan P.
Lee, Ray C.
Satzer, David
Gonzalez-Martinez, Jorge
Warnke, Peter C.
Miller, Lee E.
Boninger, Michael L.
Ajiboye, Abidemi B.
Graczyk, Emily L.
Downey, John E.
Collinger, Jennifer L.
Hatsopoulos, Nicholas G.
Gaunt, Robert A.
Bensmaia, Sliman J.
author_facet Greenspon, Charles M.
Shelchkova, Natalya D.
Valle, Giacomo
Hobbs, Taylor G.
Berger-Wolf, Ev I.
Hutchison, Brianna C.
Dogruoz, Efe
Verbarschott, Ceci
Callier, Thierri
Sobinov, Anton R.
Okorokova, Elizaveta V.
Jordan, Patrick M.
Prasad, Dillan
He, Qinpu
Liu, Fang
Kirsch, Robert F.
Miller, Jonathan P.
Lee, Ray C.
Satzer, David
Gonzalez-Martinez, Jorge
Warnke, Peter C.
Miller, Lee E.
Boninger, Michael L.
Ajiboye, Abidemi B.
Graczyk, Emily L.
Downey, John E.
Collinger, Jennifer L.
Hatsopoulos, Nicholas G.
Gaunt, Robert A.
Bensmaia, Sliman J.
author_sort Greenspon, Charles M.
collection PubMed
description When we interact with objects, we rely on signals from the hand that convey information about the object and our interaction with it. A basic feature of these interactions, the locations of contacts between the hand and object, is often only available via the sense of touch. Information about locations of contact between a brain-controlled bionic hand and an object can be signaled via intracortical microstimulation (ICMS) of somatosensory cortex (S1), which evokes touch sensations that are localized to a specific patch of skin. To provide intuitive location information, tactile sensors on the robotic hand drive ICMS through electrodes that evoke sensations at skin locations matching sensor locations. This approach requires that ICMS-evoked sensations be focal, stable, and distributed over the hand. To systematically investigate the localization of ICMS-evoked sensations, we analyzed the projected fields (PFs) of ICMS-evoked sensations – their location and spatial extent – from reports obtained over multiple years from three participants implanted with microelectrode arrays in S1. First, we found that PFs vary widely in their size across electrodes, are highly stable within electrode, are distributed over large swaths of each participant’s hand, and increase in size as the amplitude or frequency of ICMS increases. Second, while PF locations match the locations of the receptive fields (RFs) of the neurons near the stimulating electrode, PFs tend to be subsumed by the corresponding RFs. Third, multi-channel stimulation gives rise to a PF that reflects the conjunction of the PFs of the component channels. By stimulating through electrodes with largely overlapping PFs, then, we can evoke a sensation that is experienced primarily at the intersection of the component PFs. To assess the functional consequence of this phenomenon, we implemented multichannel ICMS-based feedback in a bionic hand and demonstrated that the resulting sensations are more localizable than are those evoked via single-channel ICMS.
format Online
Article
Text
id pubmed-10327055
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-103270552023-07-08 Tessellation of artificial touch via microstimulation of human somatosensory cortex Greenspon, Charles M. Shelchkova, Natalya D. Valle, Giacomo Hobbs, Taylor G. Berger-Wolf, Ev I. Hutchison, Brianna C. Dogruoz, Efe Verbarschott, Ceci Callier, Thierri Sobinov, Anton R. Okorokova, Elizaveta V. Jordan, Patrick M. Prasad, Dillan He, Qinpu Liu, Fang Kirsch, Robert F. Miller, Jonathan P. Lee, Ray C. Satzer, David Gonzalez-Martinez, Jorge Warnke, Peter C. Miller, Lee E. Boninger, Michael L. Ajiboye, Abidemi B. Graczyk, Emily L. Downey, John E. Collinger, Jennifer L. Hatsopoulos, Nicholas G. Gaunt, Robert A. Bensmaia, Sliman J. bioRxiv Article When we interact with objects, we rely on signals from the hand that convey information about the object and our interaction with it. A basic feature of these interactions, the locations of contacts between the hand and object, is often only available via the sense of touch. Information about locations of contact between a brain-controlled bionic hand and an object can be signaled via intracortical microstimulation (ICMS) of somatosensory cortex (S1), which evokes touch sensations that are localized to a specific patch of skin. To provide intuitive location information, tactile sensors on the robotic hand drive ICMS through electrodes that evoke sensations at skin locations matching sensor locations. This approach requires that ICMS-evoked sensations be focal, stable, and distributed over the hand. To systematically investigate the localization of ICMS-evoked sensations, we analyzed the projected fields (PFs) of ICMS-evoked sensations – their location and spatial extent – from reports obtained over multiple years from three participants implanted with microelectrode arrays in S1. First, we found that PFs vary widely in their size across electrodes, are highly stable within electrode, are distributed over large swaths of each participant’s hand, and increase in size as the amplitude or frequency of ICMS increases. Second, while PF locations match the locations of the receptive fields (RFs) of the neurons near the stimulating electrode, PFs tend to be subsumed by the corresponding RFs. Third, multi-channel stimulation gives rise to a PF that reflects the conjunction of the PFs of the component channels. By stimulating through electrodes with largely overlapping PFs, then, we can evoke a sensation that is experienced primarily at the intersection of the component PFs. To assess the functional consequence of this phenomenon, we implemented multichannel ICMS-based feedback in a bionic hand and demonstrated that the resulting sensations are more localizable than are those evoked via single-channel ICMS. Cold Spring Harbor Laboratory 2023-07-15 /pmc/articles/PMC10327055/ /pubmed/37425877 http://dx.doi.org/10.1101/2023.06.23.545425 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Greenspon, Charles M.
Shelchkova, Natalya D.
Valle, Giacomo
Hobbs, Taylor G.
Berger-Wolf, Ev I.
Hutchison, Brianna C.
Dogruoz, Efe
Verbarschott, Ceci
Callier, Thierri
Sobinov, Anton R.
Okorokova, Elizaveta V.
Jordan, Patrick M.
Prasad, Dillan
He, Qinpu
Liu, Fang
Kirsch, Robert F.
Miller, Jonathan P.
Lee, Ray C.
Satzer, David
Gonzalez-Martinez, Jorge
Warnke, Peter C.
Miller, Lee E.
Boninger, Michael L.
Ajiboye, Abidemi B.
Graczyk, Emily L.
Downey, John E.
Collinger, Jennifer L.
Hatsopoulos, Nicholas G.
Gaunt, Robert A.
Bensmaia, Sliman J.
Tessellation of artificial touch via microstimulation of human somatosensory cortex
title Tessellation of artificial touch via microstimulation of human somatosensory cortex
title_full Tessellation of artificial touch via microstimulation of human somatosensory cortex
title_fullStr Tessellation of artificial touch via microstimulation of human somatosensory cortex
title_full_unstemmed Tessellation of artificial touch via microstimulation of human somatosensory cortex
title_short Tessellation of artificial touch via microstimulation of human somatosensory cortex
title_sort tessellation of artificial touch via microstimulation of human somatosensory cortex
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327055/
https://www.ncbi.nlm.nih.gov/pubmed/37425877
http://dx.doi.org/10.1101/2023.06.23.545425
work_keys_str_mv AT greensponcharlesm tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT shelchkovanatalyad tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT vallegiacomo tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT hobbstaylorg tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT bergerwolfevi tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT hutchisonbriannac tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT dogruozefe tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT verbarschottceci tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT callierthierri tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT sobinovantonr tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT okorokovaelizavetav tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT jordanpatrickm tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT prasaddillan tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT heqinpu tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT liufang tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT kirschrobertf tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT millerjonathanp tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT leerayc tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT satzerdavid tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT gonzalezmartinezjorge tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT warnkepeterc tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT millerleee tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT boningermichaell tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT ajiboyeabidemib tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT graczykemilyl tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT downeyjohne tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT collingerjenniferl tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT hatsopoulosnicholasg tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT gauntroberta tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex
AT bensmaiaslimanj tessellationofartificialtouchviamicrostimulationofhumansomatosensorycortex