Cargando…
Normal gastric tissue Helicobacter pylori infection is associated with epigenetic age acceleration, increased mitotic tick rate, tissue cell composition, and Natural Killer cell methylation alterations
BACKGROUND: Gastric adenocarcinomas are a leading cause of global mortality, associated with chronic infection with Helicobacter pylori. The mechanisms by which infection with H. pylori contributes to carcinogenesis are not well understood. Recent studies from subjects with and without gastric cance...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327075/ https://www.ncbi.nlm.nih.gov/pubmed/37425894 http://dx.doi.org/10.1101/2023.06.28.546926 |
Sumario: | BACKGROUND: Gastric adenocarcinomas are a leading cause of global mortality, associated with chronic infection with Helicobacter pylori. The mechanisms by which infection with H. pylori contributes to carcinogenesis are not well understood. Recent studies from subjects with and without gastric cancer have identified significant DNA methylation alterations in normal gastric mucosa associated with H. pylori infection and gastric cancer risk. Here we further investigated DNA methylation alterations in normal gastric mucosa in gastric cancer cases (n = 42) and control subjects (n = 42) with H. pylori infection data. We assessed tissue cell type composition, DNA methylation alterations within cell populations, epigenetic aging, and repetitive element methylation. RESULTS: In normal gastric mucosa of both gastric cancer cases and control subjects, we observed increased epigenetic age acceleration associated with H. pylori infection. We also observed an increased mitotic tick rate associated with H. pylori infection in both gastric cancer cases and controls. Significant differences in immune cell populations associated with H. pylori infection in normal tissue from cancer cases and controls were identified using DNA methylation cell type deconvolution. We also found natural killer cell-specific methylation alterations in normal mucosa from gastric cancer patients with H. pylori infection. CONCLUSIONS: Our findings from normal gastric mucosa provide insight into underlying cellular composition and epigenetic aspects of H. pylori associated gastric cancer etiology. |
---|